1,054 research outputs found

    Experimental testing of tape springs folded in three dimensions

    No full text
    One of the main drivers in satellite design is the minimization of mass, in the attempt to reduce the large costs involved in the launch of the spacecraft. However, the recent advances in micro electro mechanical systems (MEMS) have allowed a further reduction in the mass of on-board equipment. With advances in micro ion propulsion systems for attitude control, and the miniaturisation of ground based mobile communications, the satellite power requirement does not reduce linearly with mass. This creates the need for photovoltaic cell areas larger than the surface area of the satellite bus. Therefore small satellite deployable structures become increasingly important. The major design requirements for such systems are reliability and low cost. The simpler the components of the system are (i.e. the minimum number of moving parts, lubrication etc), the more chance of the system meeting the design requirements. For this reason, there has been significant investigation into the deployment dynamics of tape springs folded in two dimensions, to form simple hinges which do not require lubrication and automatically locks in the deployed configuration. The present work focuses on using tapes springs to support a new conceptual area deployment design for nano/micro satellites. The deployment of this design incorporates bi-axial folding, which requires the tape springs to unfold in three dimensions. Little research has been carried out in this area. The design of a test rig to determine the properties of this three dimensional deployment is presented in detail. This rig measures both the bending and twisting moments produced from the three- dimensional fold. The combination of these two moments defines the main deployment properties of the tape springs and hence the final array. The experimental results will be compared to theoretical results produced using shell theory and non- linear, finite element analysis

    Low frequency damping of metal panels in ambient Air

    Get PDF
    Mathematical models of structural dynamics are widely used and applied in many branches of science and engineering and it has been argued that many of the shortfalls with these models are due to the fact that the physics of joint dynamics are not properly represented. Experimental analyses are therefore widely used to underpin any work in this area. The most renowned model for predicting the damping resulting from air pumping is based on a significant quantity of experimental data and was generally developed and applied to high frequency vibrations of jointed or stiffened panels. This publication applies this model to low frequency panel vibrations, assessing the accuracy of the model for these systems. It is concluded that the theoretical model for high stiffness joints, although generally over approximating the damping magnitude, gives a good conservative estimate of the increase in damping due to air pumping for low frequency vibrations

    A study of joint damping in metal plates

    No full text
    For satellite applications the determination of the correct dynamic behaviour and in particular the structural damping is important to assess the vibration environment for the spacecraft subsystems and ultimately their capability to withstand the launch vibration environment. Therefore, the object of this investigation is to experimentally analyse a range of aluminium panel configurations to study the effect of joints on the damping of the complete structure. The paper begins with a full description of the experimental method used to accurately determine the modal loss factors for each of the panel configurations analysed. Nine different panels were used in the experimental tests, six of which incorporate lap joints variations. The joint parameters investigated include fastener type, bolt torque, fastener spacing, overlap distance and the effect of stiffeners. The damping results of ten different joint variants are presented for each of the first twelve modes of vibration. This data is directly compared to the damping factors of an equivalent monolithic panel. Various specific conclusions are made with respect to each of the joint parameters investigated. However, the primary conclusion is that the mode shape combined with the joint stiffness and joint location can be suggestive as to the likely magnitude increase of the modal loss factor

    Development of inflatable structures at the University of Southampton

    No full text
    Inflatable technology for space applications is under continual development and advances in high strength fibres and rigidizable materials have pushed the limitations of these structures. This has lead to their application in deploying large-aperture antennas, reflectors and solar sails. However, many significant advantages can be achieved by combining inflatable structures with structural stiffeners such as tape springs. These advantages include control of the deployment path of the structure while it is inflating (a past weakness of inflatable structure designs), an increased stiffness of the structure once deployed and a reduction in the required inflation volume. Such structures have been previously constructed at the Jet Propulsion Laboratory focusing on large scale booms. However, due to the high efficiency of these designs they are also appealing to small satellite systems. This article outlines ongoing research work performed at the University of Southampton into the field of small satellite hybrid inflatable structures. Inflatable booms have been constructed and combined with tape spring reinforcements to create simple hybrid structures. These structures have been subjected to bending tests and compared directly to an equivalent inflatable tube without tape spring reinforcement. This enables the stiffness benefits to be determined with respect to the added mass of the tape springs. The paper presents these results, which leads to an initial performance assessment of these structures

    Premature mortality in refractory partial epilepsy: does surgical treatment make a difference?

    Get PDF
    Background: Epilepsy carries an increased risk of premature death. For some people with intractable focal epilepsy, surgery offers hope for a seizure-free life. The authors aimed to see whether epilepsy surgery influenced mortality in people with intractable epilepsy. Methods: The authors audited survival status in two cohorts (those who had surgery and those who had presurgical assessment but did not have surgery). Results: There were 40 known deaths in the non-surgical group (3365 person years of follow-up) and 19 in the surgical group (3905 person-years of follow-up). Non-operated patients were 2.4 times (95% CI 1.4 to 4.2) as likely to die as those who had surgery. They were 4.5 times (95% CI 1.9 to 10.9) as likely to die a probable epilepsy-related death. In the surgical group, those with ongoing seizures 1 year after surgery were 4.0 (95% CI 1.2 to 13.7) times as likely to die as those who were seizure-free or who had only simple partial seizures. Time-dependent Cox analysis showed that the yearly outcome group did not significantly affect mortality (HR 1.3, 95% CI 0.9 to 1.8). Conclusion: Successful epilepsy surgery was associated with a reduced risk of premature mortality, compared with those with refractory focal epilepsy who did not have surgical treatment. To some extent, the reduced mortality is likely to be conferred by inducing freedom from seizures. It is not certain whether better survival is attributable only to surgery, as treatment decisions were not randomised, and there may be inherent differences between the groups.<br/

    Phenotypic evaluation and genetic analysis of seedling emergence in a global collection of wheat genotypes (Triticum aestivum L.) under limited water availability

    Get PDF
    The challenge in establishing an early-sown wheat crop in southern Australia is the need for consistently high seedling emergence when sowing deep in subsoil moisture (>10 cm) or into dry top-soil (4 cm). However, the latter is strongly reliant on a minimum soil water availability to ensure successful seedling emergence. This study aimed to: (1) evaluate 233 Australian and selected international wheat genotypes for consistently high seedling emergence under limited soil water availability when sown in 4 cm of top-soil in field and glasshouse (GH) studies; (2) ascertain genetic loci associated with phenotypic variation using a genome-wide association study (GWAS); and (3) compare across loci for traits controlling coleoptile characteristics, germination, dormancy, and pre-harvest sprouting. Despite significant (P 85%) across nine environments. Moreover, 21 environment-specific quantitative trait loci (QTL) were detected in GWAS analysis on chromosomes 1B, 1D, 2B, 3A, 3B, 4A, 4B, 5B, 5D, and 7D, indicating complex genetic inheritance controlling seedling emergence. We aligned QTL for known traits and individual genes onto the reference genome of wheat and identified 16 QTL for seedling emergence in linkage disequilibrium with coleoptile length, width, and cross-sectional area, pre-harvest sprouting and dormancy, germination, seed longevity, and anthocyanin development. Therefore, it appears that seedling emergence is controlled by multifaceted networks of interrelated genes and traits regulated by different environmental cues

    Phenotypic Evaluation and Genetic Analysis of Seedling Emergence in a Global Collection of Wheat Genotypes (Triticum aestivum L.) Under Limited Water Availability

    Get PDF
    The challenge in establishing an early-sown wheat crop in southern Australia is the need for consistently high seedling emergence when sowing deep in subsoil moisture (>10 cm) or into dry top-soil (4 cm). However, the latter is strongly reliant on a minimum soil water availability to ensure successful seedling emergence. This study aimed to: (1) evaluate 233 Australian and selected international wheat genotypes for consistently high seedling emergence under limited soil water availability when sown in 4 cm of top-soil in field and glasshouse (GH) studies; (2) ascertain genetic loci associated with phenotypic variation using a genome-wide association study (GWAS); and (3) compare across loci for traits controlling coleoptile characteristics, germination, dormancy, and pre-harvest sprouting. Despite significant (P 85%) across nine environments. Moreover, 21 environment-specific quantitative trait loci (QTL) were detected in GWAS analysis on chromosomes 1B, 1D, 2B, 3A, 3B, 4A, 4B, 5B, 5D, and 7D, indicating complex genetic inheritance controlling seedling emergence. We aligned QTL for known traits and individual genes onto the reference genome of wheat and identified 16 QTL for seedling emergence in linkage disequilibrium with coleoptile length, width, and cross-sectional area, pre-harvest sprouting and dormancy, germination, seed longevity, and anthocyanin development. Therefore, it appears that seedling emergence is controlled by multifaceted networks of interrelated genes and traits regulated by different environmental cues

    Excitation of High-Spin States by Inelastic Proton Scattering

    Get PDF
    This work was supported by National Science Foundation Grant PHY 76-84033 and Indiana Universit

    Excitation of High-Spin States by Inelastic Proton Scattering

    Get PDF
    This work was supported by National Science Foundation Grant PHY 75-00289 and Indiana Universit

    How to find the holonomy algebra of a Lorentzian manifold

    Full text link
    Manifolds with exceptional holonomy play an important role in string theory, supergravity and M-theory. It is explained how one can find the holonomy algebra of an arbitrary Riemannian or Lorentzian manifold. Using the de~Rham and Wu decompositions, this problem is reduced to the case of locally indecomposable manifolds. In the case of locally indecomposable Riemannian manifolds, it is known that the holonomy algebra can be found from the analysis of special geometric structures on the manifold. If the holonomy algebra gāŠ‚so(1,nāˆ’1)\mathfrak{g}\subset\mathfrak{so}(1,n-1) of a locally indecomposable Lorentzian manifold (M,g)(M,g) of dimension nn is different from so(1,nāˆ’1)\mathfrak{so}(1,n-1), then it is contained in the similitude algebra sim(nāˆ’2)\mathfrak{sim}(n-2). There are 4 types of such holonomy algebras. Criterion how to find the type of g\mathfrak{g} are given, and special geometric structures corresponding to each type are described. To each g\mathfrak{g} there is a canonically associated subalgebra hāŠ‚so(nāˆ’2)\mathfrak{h}\subset\mathfrak{so}(n-2). An algorithm how to find h\mathfrak{h} is provided.Comment: 15 pages; the final versio
    • ā€¦
    corecore