2,188 research outputs found

    Water immersion for post incident cooling of firefighters; a review of practical fire ground cooling modalities

    Get PDF
    Rapidly cooling firefighters post emergency response is likely to increase the operational effectiveness of fire services during prolonged incidents. A variety of techniques have therefore been examined to return firefighters core body temperature to safe levels prior to fire scene re-entry or redeployment. The recommendation of forearm immersion (HFI) in cold water by the National Fire and Protection Association preceded implementation of this active cooling modality by a number of fire services in North America, South East Asia and Australia. The vascularity of the hands and forearms may expedite body heat removal, however, immersion of the torso, pelvis and/or lower body, otherwise known as multi-segment immersion (MSI), exposes a greater proportion of the body surface to water than HFI, potentially increasing the rates of cooling conferred. Therefore, this review sought to establish the efficacy of HFI and MSI to rapidly reduce firefighters core body temperature to safe working levels during rest periods. A total of 38 studies with 55 treatments (43 MSI, 12 HFI) were reviewed. The core body temperature cooling rates conferred by MSI were generally classified as ideal (n = 23) with a range of ~0.01 to 0.35 °C min−1. In contrast, all HFI treatments resulted in unacceptably slow core body temperature cooling rates (~0.01 to 0.05 °C min−1). Based upon the extensive field of research supporting immersion of large body surface areas and comparable logistics of establishing HFI or MSI, it is recommended that fire and rescue management reassess their approach to fireground rehabilitation of responders. Specifically, we question the use of HFI to rapidly lower firefighter core body temperature during rest periods. By utilising MSI to restore firefighter Tc to safe working levels, fire and rescue services would adopt an evidence based approach to maintaining operational capability during arduous, sustained responses. While the optimal MSI protocol will be determined by the specifics of an individual response, maximising the body surface area immersed in circulated water of up to 26 °C for 15 min is likely to return firefighter Tc to safe working levels during rest periods. Utilising cooler water temperatures will expedite Tc cooling and minimise immersion duration

    3D-to-2D Transition of Anion Vacancy Mobility in CsPbBr<sub>3</sub>under Hydrostatic Pressure

    Get PDF
    We study the effects of hydrostatic pressure in the range 0.0--2.0 GPa on anion mobility in the orthorhombic PnmaPnma phase of CsPbBr3_{3}. Using density functional theory and the climbing nudged elastic band method, we calculate the transition states and activation energies for anions to migrate both within and between neighbouring PbBr3_{3} octahedra. The results of those calculations are used as input to a kinetic model for anion migration, which we solve in the steady state to determine the anion mobility tensor as a function of applied pressure. We find that the response of the mobility tensor to increasing pressure is highly anisotropic, being strongly enhanced in the (010)(010) lattice plane and strongly reduced in the direction normal to it at elevated pressure. These results demonstrate the potentially significant influence of pressure and strain on the magnitude and direction of anion migration in lead--halide perovskites.Comment: 25 pages, 3 figure

    The Nature of the Density Clump in the Fornax Dwarf Spheroidal Galaxy

    Full text link
    We have imaged the recently discovered stellar overdensity located approximately one core radius from the center of the Fornax dwarf spheroidal galaxy using the Magellan Clay 6.5m telescope with the Magellan Instant Camera (MagIC). Superb seeing conditions allowed us to probe the stellar populations of this overdensity and of a control field within Fornax to a limiting magnitude of R=26. The color-magnitude diagram of the overdensity field is virtually identical to that of the control field with the exception of the presence of a population arising from a very short (less than 300 Myr in duration) burst of star formation 1.4 Gyr ago. Coleman et al. have argued that this overdensity might be related to a shell structure in Fornax that was created when Fornax captured a smaller galaxy. Our results are consistent with this model, but we argue that the metallicity of this young component favors a scenario in which the gas was part of Fornax itself.Comment: 24 pages including 8 figures and 3 tables. Accepted by Astronomical Journa

    Projective Ribbon Permutation Statistics: a Remnant of non-Abelian Braiding in Higher Dimensions

    Full text link
    In a recent paper, Teo and Kane proposed a 3D model in which the defects support Majorana fermion zero modes. They argued that exchanging and twisting these defects would implement a set R of unitary transformations on the zero mode Hilbert space which is a 'ghostly' recollection of the action of the braid group on Ising anyons in 2D. In this paper, we find the group T_{2n} which governs the statistics of these defects by analyzing the topology of the space K_{2n} of configurations of 2n defects in a slowly spatially-varying gapped free fermion Hamiltonian: T_{2n}\equiv {\pi_1}(K_{2n})$. We find that the group T_{2n}= Z \times T^r_{2n}, where the 'ribbon permutation group' T^r_{2n} is a mild enhancement of the permutation group S_{2n}: T^r_{2n} \equiv \Z_2 \times E((Z_2)^{2n}\rtimes S_{2n}). Here, E((Z_2)^{2n}\rtimes S_{2n}) is the 'even part' of (Z_2)^{2n} \rtimes S_{2n}, namely those elements for which the total parity of the element in (Z_2)^{2n} added to the parity of the permutation is even. Surprisingly, R is only a projective representation of T_{2n}, a possibility proposed by Wilczek. Thus, Teo and Kane's defects realize `Projective Ribbon Permutation Statistics', which we show to be consistent with locality. We extend this phenomenon to other dimensions, co-dimensions, and symmetry classes. Since it is an essential input for our calculation, we review the topological classification of gapped free fermion systems and its relation to Bott periodicity.Comment: Missing figures added. Fixed some typos. Added a paragraph to the conclusio

    Bayesian parameter estimation for characterising mobile ion vacancies in perovskite solar cells

    Full text link
    To overcome the challenges associated with poor temporal stability of perovskite solar cells, methods are required that allow for fast iteration of fabrication and characterisation, such that optimal device performance and stability may be actively pursued. Currently, establishing the causes of underperformance is both complex and time-consuming, and optimisation of device fabrication thus inherently slow. Here, we present a means of computational device characterisation of mobile halide ion parameters from room temperature current-voltage (J-V) measurements only, requiring ∼2\sim 2 hours of computation on basic computing resources. With our approach, the physical parameters of the device may be reverse modelled from experimental J-V measurements. In a drift-diffusion model, the set of coupled drift-diffusion partial differential equations cannot be inverted explicitly, so a method for inverting the drift-diffusion simulation is required. We show how Bayesian Parameter Estimation (BPE) coupled with a drift-diffusion perovskite solar cell model can determine the extent to which device parameters affect performance measured by J-V characteristics. Our method is demonstrated by investigating the extent to which device performance is influenced by mobile halide ions for a specific fabricated device. The ion vacancy density N0N_0 and diffusion coefficient DID_I were found to be precisely characterised for both simulated and fabricated devices. This result opens up the possibility of pinpointing origins of degradation by finding which parameters most influence device J-V curves as the cell degrades

    Wildlife-friendly farming benefits rare birds, bees and plants

    Get PDF
    Agricultural intensification is a leading cause of global biodiversity loss, especially for threatened and near-threatened species. One widely implemented response is ‘wildlife-friendly farming’, involving the close integration of conservation and extensive farming practices within agricultural landscapes. However, the putative benefits from this controversial policy are currently either unknown or thought unlikely to extend to rare and declining species. Here, we show that new, evidence-based approaches to habitat creation on intensively managed farmland in England can achieve large increases in plant, bee and bird species. In particular, we found that habitat enhancement methods designed to provide the requirements of sensitive target biota consistently increased the richness and abundance of both rare and common species, with 10-fold to greater than 100-fold more rare species per sample area than generalized conventional conservation measures. Furthermore, targeting landscapes of high species richness amplified beneficial effects on the least mobile taxa: plants and bees. Our results provide the first unequivocal support for a national wildlife-friendly farming policy and suggest that this approach should be implemented much more extensively to address global biodiversity loss. However, to be effective, these conservation measures must be evidence-based, and developed using sound knowledge of the ecological requirements of key species

    Manganese catalysed synthesis of polyketones using hydrogen borrowing approach.

    Get PDF
    We report here a new method to make polyketones from the coupling of diketones and diols using a manganese pincer complex. The methodology allows us to access a new type of polyketone (polyarylalkylketone) containing aryl, alkyl, and ether functionalities bridging the gap between the two classes of commercially available polyketones – aliphatic polyketones and polyaryletherketones. Using this methodology, twelve new polyketones have been synthesized and characterised using various analytical techniques to understand their chemical, physical, morphological, and mechanical properties. Based on previous reports and our studies, we suggest that the polymerization occurs via a hydrogen-borrowing mechanism that involves the dehydrogenation of diols to dialdehyde followed by aldol condensation of dialdehyde with diketones to form chalcone derivatives and their subsequent hydrogenation to form polyarylalkylketones
    • …
    corecore