326 research outputs found
Supervision in Nature: Integrating the Natural World in Supervision
Counseling supervision is a crucial component to the development of a counselor. Supervisors may integrate a variety of supervision techniques within the supervision process to facilitate the growth of the supervisee. This manuscript focuses on the integration of nature within the supervision process. We discuss the benefits of nature for humans, present nature-based supervision activities within the eight domains of professional functioning within the Integrated Developmental Model (IDM) of supervisee development, and discuss considerations for integrating nature within the supervision process
A linear domain decomposition method for two-phase flow in porous media
This article is a follow up of our submitted paper [11] in which a
decomposition of the Richards equation along two soil layers was discussed. A
decomposed problem was formulated and a decoupling and linearisation technique
was presented to solve the problem in each time step in a fixed point type
iteration. This article extends these ideas to the case of two-phase in porous
media and the convergence of the proposed domain decomposition method is
rigorously shown.Comment: 8 page
The YsrS Paralog DygS Has the Capacity To Activate Expression of the Yersinia enterocolitica Ysa Type III Secretion System
ABSTRACT The Yersinia enterocolitica Ysa type III secretion system (T3SS) is associated with intracellular survival, and, like other characterized T3SSs, it is tightly controlled. Expression of the ysa genes is only detected following growth at low temperatures (26°C) and in high concentrations of sodium chloride (290 mM) in the medium. The YsrSTR phosphorelay (PR) system is required for ysa expression and likely responds to NaCl. During our investigations into the Ysr PR system, we discovered that genes YE3578 and YE3579 are remarkably similar to ysrR and ysrS , respectively, and are probably a consequence of a gene duplication event. The amino acid differences between YE3578 and ysrR are primarily clustered into two short regions. The differences between YE3579 and ysrS are nearly all located in the periplasmic sensing domain; the cytoplasmic domains are 98% identical. We investigated whether these paralogs were capable of activating ysa gene expression. We found that the sensor paralog, named DygS, is capable of compensating for loss of ysrS , but the response regulator paralog, DygR, cannot complement a ysrR gene deletion. In addition, YsrR, but not DygR, interacts with the histidine phosphorelay protein YsrT. Thus, DygS likely activates ysa gene expression in response to a signal other than NaCl and provides an example of a phosphorelay system in which two sensor kinases feed into the same regulatory pathway. IMPORTANCE All organisms need mechanisms to promote survival in changing environments. Prokaryotic phosphorelay systems are minimally comprised of a histidine kinase (HK) that senses an extracellular stimulus and a response regulator (RR) but can contain three or more proteins. Through gene duplication, a unique hybrid HK was created. We show that, while the hybrid appears to retain all of the phosphorelay functions, it responds to a different signal than the original. Both HKs transmit the signal to the same RR, which activates a promoter that transcribes a set of genes encoding a type III secretion system (T3SS) whose function is not yet evident. The significance of this work lies in finding that two HKs regulate this T3SS, highlighting its importance
A Serendipitous Mutation Reveals the Severe Virulence Defect of a Klebsiella pneumoniae fepB Mutant
ABSTRACT Klebsiella pneumoniae is considered a significant public health threat because of the emergence of multidrug-resistant strains and the challenge associated with treating life-threatening infections. Capsule, siderophores, and adhesins have been implicated as virulence determinants of K. pneumoniae , yet we lack a clear understanding of how this pathogen causes disease. In a previous screen for virulence genes, we identified a potential new virulence locus and constructed a mutant ( smr ) with this locus deleted. In this study, we characterize the smr mutant and show that this mutation renders K. pneumoniae avirulent in a pneumonia model of infection. The smr mutant was expected to have a deletion of three genes, but subsequent genome sequencing indicated that a much larger deletion had occurred. Further analysis of the deleted region indicated that the virulence defect of the smr mutant could be attributed to the loss of FepB, a periplasmic protein required for import of the siderophore enterobactin. Interestingly, a Δ fepB mutant was more attenuated than a mutant unable to synthesize enterobactin, suggesting that additional processes are affected. As FepB is highly conserved among the members of the family Enterobacteriaceae , therapeutic targeting of FepB may be useful for the treatment of Klebsiella and other bacterial infections. IMPORTANCE In addition to having a reputation as the causative agent of several types of hospital-acquired infections, Klebsiella pneumoniae has gained widespread attention as a pathogen with a propensity for acquiring antibiotic resistance. It is capable of causing a range of infections, including urinary tract infections, pneumonia, and sepsis. Because of the rapid emergence of carbapenem resistance among Klebsiella strains, there is a dire need for a better understanding of virulence mechanisms and identification of new drug targets. Here, we identify the periplasmic transporter FepB as one such potential target
A Phenotype at Last: Essential Role for the Yersinia enterocolitica Ysa Type III Secretion System in a Drosophila melanogaster S2 Cell Model
ABSTRACT The highly pathogenic Yersinia enterocolitica strains have a chromosomally encoded type III secretion system (T3SS) that is expressed and functional in vitro only when the bacteria are cultured at 26°C. Mutations that render this system nonfunctional are slightly attenuated in the mouse model of infection only following an oral inoculation and only at early time points postinfection. The discrepancy between the temperature required for the Ysa gene expression and the physiological temperature required for mammalian model systems has made defining the role of this T3SS challenging. Therefore, we explored the use of Drosophila S2 cells as a model system for studying Ysa function. We show here that Y. enterocolitica is capable of infecting S2 cells and replicating intracellularly to high levels, an unusual feature of this pathogen. Importantly, we show that the Ysa T3SS is required for robust intracellular replication. A secretion-deficient mutant lacking the secretin gene, ysaC , is defective in replication within S2 cells, marking the first demonstration of a pronounced Ysa-dependent virulence phenotype. Establishment of S2 cells as a model for Y. enterocolitica infection provides a versatile tool to elucidate the role of the Ysa T3SS in the life cycle of this gastrointestinal pathogen
Multicenter evaluation of the Xpert Norovirus assay for detection of norovirus genogroups I and II in fecal specimens
Norovirus is the most common cause of sporadic gastroenteritis and outbreaks worldwide. The rapid identification of norovirus has important implications for infection prevention measures and may reduce the need for additional diagnostic testing. The Xpert Norovirus assay recently received FDA clearance for the detection and differentiation of norovirus genogroups I and II (GI and GII), which account for the vast majority of infections. In this study, we evaluated the performance of the Xpert Norovirus assay with both fresh, prospectively collected ( n = 914) and frozen, archived ( n = 489) fecal specimens. A Centers for Disease Control and Prevention (CDC) composite reference method was used as the gold standard for comparison. For both prospective and frozen specimens, the Xpert Norovirus assay showed positive percent agreement (PPA) and negative percent agreement (NPA) values of 98.3% and 98.1% for GI and of 99.4% and 98.2% for GII, respectively. Norovirus prevalence in the prospective specimens (collected from March to May of 2014) was 9.9% ( n = 90), with the majority of positives caused by genogroup II (82%, n = 74). The positive predictive value (PPV) of the Xpert Norovirus assay was 75% for GI-positive specimens, whereas it was 86.5% for GII-positive specimens. The negative predictive values (NPV) for GI and GII were 100% and 99.9%, respectively
Effects of a Cognitive Behavioral Therapy Intervention Trial to Improve Disease Outcomes in Children with Inflammatory Bowel Disease:
Studies testing the efficacy of behavioral interventions to modify psychosocial sequelae of IBD in children are limited. This report presents outcomes through a six month follow up from a large RCT testing the efficacy of a cognitive-behavioral intervention for children with IBD and their parents
Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation
The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of β-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis
Acquired Resistance to BRAF Inhibitors Mediated by a RAF Kinase Switch in Melanoma Can Be Overcome by Cotargeting MEK and IGF-1R/PI3K
SummaryBRAF is an attractive target for melanoma drug development. However, resistance to BRAF inhibitors is a significant clinical challenge. We describe a model of resistance to BRAF inhibitors developed by chronic treatment of BRAFV600E melanoma cells with the BRAF inhibitor SB-590885; these cells are cross-resistant to other BRAF-selective inhibitors. Resistance involves flexible switching among the three RAF isoforms, underscoring the ability of melanoma cells to adapt to pharmacological challenges. IGF-1R/PI3K signaling was enhanced in resistant melanomas, and combined treatment with IGF-1R/PI3K and MEK inhibitors induced death of BRAF inhibitor-resistant cells. Increased IGF-1R and pAKT levels in a post-relapse human tumor sample are consistent with a role for IGF-1R/PI3K-dependent survival in the development of resistance to BRAF inhibitors
Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility
Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here we performed RNA-sequencing on 4 brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery
- …