46,662 research outputs found

    Circular Dichroism of RbHe and RbN2_2 Molecules

    Full text link
    We present measurements of the circular dichroism of optically pumped Rb vapor near the D1 resonance line. Collisions with the buffer gases 3^3He and N2_2 reduce the transparency of the vapor, even when fully polarized. We use two methods to measure this effect, show that the He results can be understood from RbHe potential curves, and show how this effect conspires with the spectral profile of the optical pumping light to increase the laser power demands for optical pumping of very optically thick samples

    Effects of Nitrogen Quenching Gas on Spin-Exchange Optical Pumping of He-3

    Full text link
    We consider the degree of conservation of nuclear spin polarization in the process of optical pumping under typical spin-exchange optical pumping conditions. Previous analyses have assumed that negligible nuclear spin precession occurs in the brief periods of time the alkali-metal atoms are in the excited state after absorbing photons and before undergoing quenching collisions with nitrogen molecules. We include excited-state hyperfine interactions, electronic spin relaxation in collisions with He and N_2, spontaneous emission, quenching collisions, and a simplified treatment of radiation trapping

    The Origin of Anomalous Low-Temperature Downturns in the Thermal Conductivity of Cuprates

    Full text link
    We show that the anomalous decrease in the thermal conductivity of cuprates below 300 mK, as has been observed recently in several cuprate materials including Pr2−x_{2-x}Cex_xCuO7−δ_{7-\delta} in the field-induced normal state, is due to the thermal decoupling of phonons and electrons in the sample. Upon lowering the temperature, the phonon-electron heat transfer rate decreases and, as a result, a heat current bottleneck develops between the phonons, which can in some cases be primarily responsible for heating the sample, and the electrons. The contribution that the electrons make to the total low-TT heat current is thus limited by the phonon-electron heat transfer rate, and falls rapidly with decreasing temperature, resulting in the apparent low-TT downturn of the thermal conductivity. We obtain the temperature and magnetic field dependence of the low-TT thermal conductivity in the presence of phonon-electron thermal decoupling and find good agreement with the data in both the normal and superconducting states.Comment: 8 pages, 5 figure

    A Statistical Description of AGN Jet Evolution from the VLBA Imaging and Polarimetry Survey (VIPS)

    Full text link
    A detailed analysis of the evolution of the properties of core-jet systems within the VLBA Imaging and Polarimetry Survey (VIPS) is presented. We find a power-law relationship between jet intensity and width that suggests for the typical jet, little if any energy is lost as it moves away from its core. Using VLA images at 1.5 GHz, we have found evidence that parsec-scale jets tend to be aligned with the the direction of emission on kiloparsec scales. We also found that this alignment improves as the jets move farther from their cores on projected scales as small as ~50-100 pc. This suggests that realignment of jets on these projected scales is relatively common. We typically find a modest amount of bending (a change in jet position angle of ~5 deg.) on these scales, suggesting that this realignment may typically occur relatively gradually.Comment: Accepted to ApJ, 20 pages, 8 figure
    • …
    corecore