5 research outputs found

    Transition Metal Complexes of Dibenzyl Tetraazamacrocycles

    Get PDF
    Tetraazamacrocycles, cyclic molecules with four nitrogen atoms, have long been known to produce highly stable transition metal complexes. Cross-bridging such molecules with 2-carbon chains has been shown to enhance the stability of these complexes even further, providing enough stability to use the resulting compounds in applications as diverse and demanding as aqueous, green oxidation catalysis all the way to drug molecules injected into humans. Although the stability of these compounds is believed to result from the increased rigidity and topological complexity imparted by the cross-bridge, there is insufficient experimental data to exclude other causes. In this study, standard organic and inorganic synthetic methods were used to produce unbridged dibenzyl tetraazamacrocycle analogues of known cross-bridged tetraazamacrocycles and their transition metal complexes to allow direct comparison of molecules identical except for the cross-bridge. The syntheses of the known tetraazamacrocycles and the novel transition metal complexes were successful with high yields and purity. Initial chemical characterization of the complexes by UV-Visible spectroscopy and cyclic voltammetry shows little difference in electronic properties from bridged versions. Direct comparison studies of the unbridged and bridged compounds’ stabilities remain to be carried out and will shed light on the importance of the cross-bridge to complex robustness

    Tetraazamacrocyclic derivatives and their metal complexes as antileishmanial leads

    Get PDF
    © 2019 A total of 44 bis-aryl-monocyclic polyamines, monoaryl-monocyclic polyamines and their transition metal complexes were prepared, chemically characterized, and screened in vitro against the Leishmania donovani promastigotes, axenic amastigotes and intracellular amastigotes in THP1 cells. The IC 50 and/or IC 90 values showed that 10 compounds were similarly active at about 2-fold less potent than known drug pentamidine against promastigotes. The most potent compound had an IC 50 of 2.82 µM (compared to 2.93 µM for pentamidine). Nine compounds were 1.1–13.6-fold more potent than pentamidine against axenic amastigotes, the most potent one being about 2-fold less potent than amphotericin B. Fourteen compounds were about 2–10 fold more potent than pentamidine, the most potent one is about 2-fold less potent than amphotericin B against intracellular amastigotes in THP1 cells. The 2 most promising compounds (FeL7Cl 2 and MnL7Cl 2 ), with strong activity against both promastigotes and amastigotes and no observable toxicity against the THP1 cells are the Fe 2+ - and Mn 2+ -complexes of a dibenzyl cyclen derivative. Only 2 of the 44 compounds showed observable cytotoxicity against THP1 cells. Tetraazamacrocyclic monocyclic polyamines represent a new class of antileishmanial lead structures that warrant follow up studies

    A Bridge too Far? Comparison of Transition Metal Complexes of Dibenzyltetraazamacrocycles with and without Ethylene Cross-Bridges: X-ray Crystal Structures, Kinetic Stability, and Electronic Properties

    No full text
    Tetraazamacrocycles, cyclic molecules with four nitrogen atoms, have long been known to produce highly stable transition metal complexes. Cross-bridging such molecules with two-carbon chains has been shown to enhance the stability of these complexes even further. This provides enough stability to use the resulting compounds in applications as diverse and demanding as aqueous, green oxidation catalysis all the way to drug molecules injected into humans. Although the stability of these compounds is believed to result from the increased rigidity and topological complexity imparted by the cross-bridge, there is insufficient experimental data to exclude other causes. In this study, standard organic and inorganic synthetic methods were used to produce unbridged dibenzyl tetraazamacrocycle complexes of Co, Ni, Cu, and Zn that are analogues of known cross-bridged tetraazamacrocycles and their transition metal complexes to allow direct comparison of molecules that are identical except for the cross-bridge. The syntheses of the known tetraazamacrocycles and the new transition metal complexes were successful with high yields and purity. Initial chemical characterization of the complexes was conducted by UV-Visible spectroscopy, while cyclic voltammetry showed more marked differences in electronic properties from bridged versions. Direct comparison studies of the unbridged and bridged compounds’ kinetic stabilities, as demonstrated by decomposition using high acid concentration and elevated temperature, showed that the cyclen-based complex stability did not benefit from cross-bridging. This is likely due to poor complementarity with the Cu2+ ion while cyclam-based complexes benefited greatly. We conclude that ligand–metal complementarity must be maintained in order for the topological and rigidity constraints imparted by the cross-bridge to contribute significantly to complex robustness

    Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)-Oxo Complexes

    No full text
    Manganese(IV)-oxo complexes are often invoked as intermediates in Mn-catalyzed C-H bond activation reactions. While many synthetic MnIV-oxo species are mild oxidants, other members of this class can attack strong C-H bonds. The basis for these reactivity differences is not well understood. Here we describe a series of MnIV-oxo complexes with N5 pentadentate ligands that modulate the equatorial ligand field of the MnIV center, as assessed by electronic absorption, electron paramagnetic resonance, and Mn K-edge X-ray absorption methods. Kinetic experiments show dramatic rate variations in hydrogen-atom and oxygen-atom transfer reactions, with faster rates corresponding to weaker equatorial ligand fields. For these MnIV-oxo complexes, the rate enhancements are correlated with both 1)the energy of a low-lying 4E excited state, which has been postulated to be involved in a two-state reactivity model, and 2)the MnIII/IV reduction potentials

    A Bridge too Far? Comparison of Transition Metal Complexes of Dibenzyltetraazamacrocycles with and without Ethylene Cross-Bridges: X-ray Crystal Structures, Kinetic Stability, and Electronic Properties

    Get PDF
    Tetraazamacrocycles, cyclic molecules with four nitrogen atoms, have long been known to produce highly stable transition metal complexes. Cross-bridging such molecules with two-carbon chains has been shown to enhance the stability of these complexes even further. This provides enough stability to use the resulting compounds in applications as diverse and demanding as aqueous, green oxidation catalysis all the way to drug molecules injected into humans. Although the stability of these compounds is believed to result from the increased rigidity and topological complexity imparted by the cross-bridge, there is insufficient experimental data to exclude other causes. In this study, standard organic and inorganic synthetic methods were used to produce unbridged dibenzyl tetraazamacrocycle complexes of Co, Ni, Cu, and Zn that are analogues of known cross-bridged tetraazamacrocycles and their transition metal complexes to allow direct comparison of molecules that are identical except for the cross-bridge. The syntheses of the known tetraazamacrocycles and the new transition metal complexes were successful with high yields and purity. Initial chemical characterization of the complexes was conducted by UV-Visible spectroscopy, while cyclic voltammetry showed more marked differences in electronic properties from bridged versions. Direct comparison studies of the unbridged and bridged compounds’ kinetic stabilities, as demonstrated by decomposition using high acid concentration and elevated temperature, showed that the cyclen-based complex stability did not benefit from cross-bridging. This is likely due to poor complementarity with the Cu2+ ion while cyclam-based complexes benefited greatly. We conclude that ligand–metal complementarity must be maintained in order for the topological and rigidity constraints imparted by the cross-bridge to contribute significantly to complex robustness
    corecore