23 research outputs found

    Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila embryo

    Get PDF
    A well-defined set of transcriptional regulatory modules was created and analyzed in the Drosophila embryo.Fractional occupancy-based models were developed to explain the interaction of short range transcriptional repressors with endogenous activators by using quantitative data from these modules.Our fractional occupancy-based modeling uncovered specific quantitative features of short-range repressors; a complex nonlinear quenching relationship, similar quenching efficiencies for different activators, and modest levels of cooperativityThe extension of the study to endogenous enhancers highlighted several features of enhancer architecture design in Drosophila embryos

    Alveolar socket healing in 5-lipoxygenase knockout aged female mice treated or not with high dose of zoledronic acid

    Get PDF
    This study investigated the role 5-lypoxigenase (5-LO) on alveolar socket healing in aged female mice treated with zoledronic acid (ZL). Forty 129/Sv female mice (64-68 weeks old), 20 wild type (WT) and 20 5-LO knockout (5LOKO) were equally distributed according to ZL treatment: WT Control, WT ZL, 5LOKO Control, and 5LOKO ZL. ZL groups were treated with an intraperitoneal injection of 250 µg/Kg of ZL, while controls were treated with saline. Treatments were administered once a week, starting four weeks before surgery for tooth extraction and until 7 and 21 days post-surgery. Mice were euthanized for a comprehensive microscopic analysis (microCT, histomorphometry and immunohistochemistry). WT ZL mice presented intense inflammatory infiltrate (7 days), delayed bone formation (21 days), reduced collagenous matrix quality, and a deficiency in Runx-2 + , TRAP + , and macrophages as compared to controls. 5LOKO ZL animals presented decreased number of Runx-2 + cells in comparison to 5LOKO Control at 7 days, but no major changes in bone healing as compared to WT or 5LOKO mice at 21 days. The knockout of 5LO favored intramembranous bone healing in aged female mice, with a direct impact on inflammatory response and bone metabolism on the development of ONJ-like lesions

    Temperature Changes during Implant Osteotomy Preparations in Human Cadaver Tibiae Comparing MIS® Straight Drills with Densah® Burs

    No full text
    (1) Background: Several studies showed a sustained temperature of 47 °C or 50 °C for one minute resulted in vascular stasis and bone resorption with only limited bone regrowth over a 3–4-week healing period. The purpose of the present study was to evaluate the temperature changes (ΔΤ) that occur during the preparation of dental implant osteotomies using MIS® straight drills versus Densah® burs in a clockwise (cutting) drilling protocol. (2) Methods: Two hundred forty (240) osteotomies of two different systems’ drills were prepared at 6 mm depth at 800, 1000, and 1200 revolutions per minute (RPM), in fresh, unembalmed tibiae, obtained by a female cadaver. ΔΤ was calculated by subtracting the baseline temperature on the tibial surface, from the maximum temperature-inside the osteotomy (ΔT = Tmax − Tbase). The variables were evaluated both for their individual and for their synergistic effect on ΔΤ with the use of one-, two-, three- and four-way interactions; (3) Results: An independent and a three-way interaction (drill design, drill width, and RPM) was found in all three RPM for the Densah® burs and at 1000 RPM for the MIS® straight drills. As Densah® burs diameter increased, ΔΤ decreased. The aforementioned pattern was seen only at 1000 RPM for the MIS® straight drills. The usage of drills 20 times more than the implant manufacturers’ recommendation did not significantly affect the ΔΤ. A stereoscopic examination of the specimens confirmed the findings. (4) Conclusions: The independent and synergistic effect of drills’ diameter, design and RPM had a significant effect on ΔΤ in human tibiae, which never exceeded the critical threshold of 47 °C

    Can Genetic Factors Compromise the Success of Dental Implants? A Systematic Review and Meta-Analysis

    Get PDF
    Dental implants provide a predictable treatment option for partial and complete edentulism via the placement of a fixed permanent artificial root to support prosthetic dental crowns. Despite the high survival rates, long-term dental implant failures are still reported, leading to implant removals and additional financial and health burdens. While extrinsic factors that improve the success rate of implants have been well explored, the impact of genetic factors on this matter is poorly understood. A systematic review and meta-analysis study was conducted to determine whether genetic factors contribute to an increased risk of dental implant failures. A comprehensive search for peer-reviewed articles on dental implants and genetic factors was performed using various literature database libraries. The study design was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, and the obtained records were registered in the International Prospective Register of Systematic Reviews (PROSPERO) database. According to the exclusion/inclusion criteria, 13 studies were eligible for this study out of 809 articles. The meta-analysis of the combined association studies of DNA variations and dental implants did not indicate an increased risk for implant failure due to DNA variations in IL-1B, IL-10 and TNF-α. This study emphasizes the need for larger randomized controlled clinical trials to inform clinicians and patients about the role of genetic factors on dental implant survival and the success rate in healthy and compromised patients
    corecore