35 research outputs found

    IL-1β-Mediated Activation of Adipose-Derived Mesenchymal Stromal Cells Results in PMN Reallocation and Enhanced Phagocytosis: A Possible Mechanism for the Reduction of Osteoarthritis Pathology

    Get PDF
    Background: Injection of adipose-derived mesenchymal stromal cells (ASCs) into murine knee joints after induction of inflammatory collagenase-induced osteoarthritis (CiOA) reduces development of joint pathology. This protection is only achieved when ASCs are applied in early CiOA, which is characterized by synovitis and high S100A8/A9 and IL-1β levels, suggesting that inflammation is a prerequisite for the protective effect of ASCs. Our objective was to gain more insight into the interplay between synovitis and ASC-mediated amelioration of CiOA pathology.Methods: CiOA was induced by intra-articular collagenase injection. Knee joint sections were stained with hematoxylin/eosin and immunolocalization of polymorphonuclear cells (PMNs) and ASCs was performed using antibodies for NIMP-R14 and CD271, respectively. Chemokine expression induced by IL-1β or S100A8/A9 was assessed with qPCR and Luminex. ASC-PMN co-cultures were analyzed microscopically and with Luminex for inflammatory mediators. Migration of PMNs through transwell membranes toward conditioned medium of non-stimulated ASCs (ASCNS-CM) or IL-1β-stimulated ASCs (ASCIL-1β-CM) was examined using flow cytometry. Phagocytic capacity of PMNs was measured with labeled zymosan particles.Results: Intra-articular saline injection on day 7 of CiOA increased synovitis after 6 h, characterized by PMNs scattered throughout the joint cavity and the synovium. ASC injection resulted in comparable numbers of PMNs which clustered around ASCs in close interaction with the synovial lining. IL-1β-stimulation of ASCs in vitro strongly increased expression of PMN-attracting chemokines CXCL5, CXCL7, and KC, whereas S100A8/A9-stimulation did not. In agreement, the number of clustered PMNs per ASC was significantly increased after 6 h of co-culturing with IL-1β-stimulated ASCs. Also migration of PMNs toward ASCIL-1β-CM was significantly enhanced (287%) when compared to ASCNS-CM. Interestingly, association of PMNs with ASCs significantly diminished KC protein release by ASCs (69% lower after 24 h), accompanied by reduced release of S100A8/A9 protein by the PMNs. Moreover, phagocytic capacity of PMNs was strongly enhanced after priming with ASCIL-1β-CM.Conclusions: Local application of ASCs in inflamed CiOA knee joints results in clustering of attracted PMNs with ASCs in the synovium, which is likely mediated by IL-1β-induced up-regulation of chemokine release by ASCs. This results in enhanced phagocytic capacity of PMNs, enabling the clearance of debris to attenuate synovitis

    Heparin and heparinoids prevent the binding of immune complexes containing nucleosomal antigens to the GBM and delay nephritis in MRL/lpr mice

    Get PDF
    Heparin and heparinoids prevent the binding of immune complexes containing nucleosomal antigens to the GBM and delay nephritis in MRL/lpr mice. Monoclonal anti-nucleosome antibodies (mAbs) complexed to nucleosomal antigens can bind to DNA and to heparan sulfate (HS) in ELISA and to the GBM in vivo in a rat renal perfusion system, whereas non-complexed mAbs do not bind [1]. In this study, we analyzed whether heparin (HEP) or N-desulfated/acetylated heparins (DSA-HEP), structurally and functionally strongly related to HS, are able to prevent the binding of these complexed mAbs to DNA and to HS in vitro and to rat GBM in vivo. In ELISA the binding of nucleosome complexed anti-nucleosome antibodies to DNA and HS was inhibited dose-dependently by HEP, DSA-HEP and low molecular weight (LMW) DSA-HEP. Intravenous injection of nucleosome/anti-nucleosome immune complexes without heparin/heparinoids in BALB/c mice led to GBM binding, while simultaneous injection of heparin/heparinoids with complexed antibodies or pretreatment with heparin subcutaneously prior to injection of complexes prevented this binding. Subsequently, we tested the preventive effect of HEP, DSA-HEP and LMW-DSA-HEP on progression of renal disease in MRL/lpr mice. Treatment was started at an age of eight weeks in a dose of 50 µg daily. With all three drugs albuminuria was significantly delayed compared to PBS treated controls (cumulative incidence of proteinuria at 20 weeks in controls 60% vs. 13%, 14% and 6% respectively for HEP, DSA-HEP and LMW-DSA-HEP; P < 0.05). At week 21 the glomerulonephritis was histologically less severe in heparin/heparinoid treated animals (P = 0.02). In immunofluorescence the amount of immunoglobulin and C3 deposits in the glomerular capillary wall tended to be less in heparin/heparinoid treated mice compared to PBS treated controls (P = 0.07). Furthermore, at 20 weeks anti-HS levels in plasma of heparin/heparinoid treated mice were significantly lower (P < 0.05). We conclude that interaction of heparin or heparin analogs with HS reactive immune complexes containing nucleosomal antigens prevents the binding of these immune complexes to the GBM and delays nephritis in MRL/lpr mice

    Liposomal treatment of experimental arthritis can be monitored noninvasively with a radiolabeled anti-fibroblast activation protein antibody

    No full text
    Rheumatoid arthritis is a chronic autoimmune disorder resulting in synovial inflammation. Fibroblast activation protein (FAP) is overexpressed by fibroblastlike synoviocytes in arthritic joints. Radioimmunoimaging with an anti-FAP antibody might be used to monitor the response to therapy, thus enabling tailored therapy strategies and therapeutic outcomes. The aim of this study was to assess whether a radiolabeled anti-FAP antibody could be used to monitor the efficacy of treatment with long-circulating liposomes (LCL) containing prednisolone phosphate (PLP-LCL) in a mouse model of arthritis. Methods: Collagen-induced arthritis (CIA) was induced in male DBA/1J mice. Mice were treated with a single injection (10 mg/kg) of PLP-LCL or empty LCL as a control. SPECT and CT images were acquired 24 h after injection of 99mTc-labeled succinimidylhydrazinonicotinamide (99mTc-S-HYNIC)-conjugated anti-FAP antibody 28H1 at 2, 5, and 9 d after treatment. The uptake of 99mTc-SHYNIC-28H1 in all joints was quantified and correlated with macroscopic arthritis scores. Results: Treatment of CIA with PLP-LCL significantly suppressed joint swelling. At just 1 d after treatment, the macroscopic arthritis scores had decreased by 50%. Scores decreased further, to only 10% of the initial scores, at 5 and 9 d after treatment. In contrast, macroscopic arthritis scores had increased up to 600% in untreated mice at 9 d after the injection of empty LCL. 99mTc-S-HYNIC-28H1 uptake ranged from 1.5 percentage injected dose per gram in noninflamed joints to 22.6 percentage injected dose per gram in severely inflamed joints. The uptake of radiolabeled 28H1 in inflamed joints (percentage injected dose) correlated with the arthritis score (Spearman r, 0.77; P < 0.0001). Moreover, the uptake of 99mTc-S-HYNIC-28H1 was slightly increased at 9 d after therapy but was not seen macroscopically, indicating that SPECT/CT imaging might be more sensitive than the macroscopic arthritis scoring method. Conclusion: SPECT/CT imaging with 99mTc-S-HYNIC-28H1 specifically monitored the response to therapy, and tracer accumulation correlated with the severity of inflammation. In addition, SPECT/CT imaging was potentially more sensitive than themacroscopic arthritis scoring method. This study showed that SPECT/CT with 99mTc-S-HYNIC-28H1 could be used to noninvasively monitor the course of CIA in mice

    Entrepreneurship and Innovation Program Annual Report - Research 2011

    No full text
    The Entrepreneurship and Innovation Program at the University of Sydney Business School focuses on identifying, nurturing and strengthening entrepreneurial communities of learning and practice. This 2011 Annual Report sets out our research activities and achievements, as catalysts for community and action

    Fibroblast Activation Protein Targeted Photodynamic Therapy Selectively Kills Activated Skin Fibroblasts from Systemic Sclerosis Patients and Prevents Tissue Contraction

    No full text
    Systemic sclerosis (SSc) is a rare, severe, auto-immune disease characterized by inflammation, vasculopathy and fibrosis. Activated (myo)fibroblasts are crucial drivers of this fibrosis. By exploiting their expression of fibroblast activation protein (FAP) to perform targeted photodynamic therapy (tPDT), we can locoregionally deplete these pathogenic cells. In this study, we explored the use of FAP-tPDT in primary skin fibroblasts from SSc patients, both in 2D and 3D cultures. Method: The FAP targeting antibody 28H1 was conjugated with the photosensitizer IRDye700DX. Primary skin fibroblasts were obtained from lesional skin biopsies of SSc patients via spontaneous outgrowth and subsequently cultured on plastic or collagen type I. For 2D FAP-tPDT, cells were incubated in buffer with or without the antibody-photosensitizer construct, washed after 4 h and exposed to λ = 689 nm light. Cell viability was measured using CellTiter Glo®®. For 3D FAP-tPDT, cells were seeded in collagen plugs and underwent the same treatment procedure. Contraction of the plugs was followed over time to determine myofibroblast activity. Results: FAP-tPDT resulted in antibody-dose dependent cytotoxicity in primary skin fibroblasts upon light exposure. Cells not exposed to light or incubated with an irrelevant antibody-photosensitizer construct did not show this response. FAP-tPDT fully prevented contraction of collagen plugs seeded with primary SSc fibroblasts. Even incubation with a very low dose of antibody (0.4 nM) inhibited contraction in 2 out of 3 donors. Conclusions: Here we have shown, for the first time, the potential of FAP-tPDT for the treatment of fibrosis in SSc skin

    Higher efficacy of anti-IL-6/IL-21 combination therapy compared to monotherapy in the induction phase of Th17-driven experimental arthritis.

    Get PDF
    Th17 cells and their cytokines are linked to the pathogenesis of rheumatoid arthritis, a chronic autoimmune disease characterized by joint inflammation. Th17 development is initiated by combined signaling of TGF-β and IL-6 or IL-21, and can be reduced in the absence of either IL-6 or IL-21. The aim of this study was to assess whether combinatorial IL-6/IL-21 blockade would more potently inhibit Th17 development, and be more efficacious in treating arthritis than targeting either cytokine. We assessed in vitro Th17 differentiation efficacy in the absence of IL-6 and/or IL-21. To investigate in vivo effects of IL-6/IL-21 blockade on Th17 and arthritis development, antigen-induced arthritis (AIA) was induced in IL-6-/- x IL-21R-/- mice. The therapeutic potential of this combined blocking strategy was assessed by treating mice with collagen-induced arthritis (CIA) with anti-IL-6R antibodies and soluble (s)IL-21R.Fc. We demonstrated that combined IL-6/IL-21 blocking synergistically reduced in vitro Th17 differentiation. In mice with AIA, absence of IL-6 and IL-21 signaling more strongly reduced Th17 levels and resulted in stronger suppression of arthritis than the absence of either cytokine. Additionally, anti-IL-6/anti-IL-21 treatment of CIA mice during the arthritis induction phase reduced disease development more potent than IL-6 or IL-21 inhibition alone, as effective as anti-TNF treatment. Collectively, these results suggest dual IL-6/IL-21 inhibition may be a more efficacious therapeutic strategy compared to single cytokine blockade to suppress arthritis development
    corecore