8 research outputs found

    ADSORPTIVE REMOVAL OF DOXYCYCLINE FROM AQUEOUS SOLUTION USING GRAPHENE OXIDE/HYDROGEL COMPOSITE

    Get PDF
    Objective: Preparation of novel, safe, and low-cost composite by addition of graphene oxide (GO) to polyvinylpyrrolidone-acrylic acid composite (PVP-AAc) to remove the doxycycline hydrochloride (D) from polluted aquatic environment. Methods: Different concentrations of D were used to study the adsorption process of the antibiotic on the surface of GO/(PVP-AAc) hydrogel composite. The aquatic solution of D was used for studying the adsorption process through a series of different experiments to determine the contact time, adsorbate amount, appropriate temperature, the preferred pH, ionic strength, adsorption kinetics and isotherms on the adsorbent surface of GO/PVP-AAc composite. Fourier transform infrared (FT-IR) spectroscopy and Field-emission scanning electron microscopy (FE-SEM) were used to detect the structure, functional groups and surface morphology of the composite before and after D adsorption. Results: Doxycycline is adsorb on the surface of GO/PVP-AAc hydrogel composite through by physical interactions. The adsorption kinetics correlated to the pseudo-second-order model, contact time studies of D equal to 180 min and the high R2 value of 0.98 indicates that Langmuir isotherm model better fitted to the data for the removal of D at 15 °C. The results of thermodynamic parameters show that the nature of the adsorption process is physical, exothermic, orderly and spontaneous. The adsorption capacity of D favors the acidic media. When NaCl is added to the solution, the adsorption capacity of D will increase. Conclusion: Graphene oxide/PVP-AAc composite is a novel, worthy and efficient adsorbent for the removal of the doxycycline polluted the water because of its low cost, hydrophilic properties, large surface area and special structure that give impressive dispersible activity in aquatic solutions

    Berbamine and thymoquinone exert protective effects against immune-mediated liver injury via NF-κB dependent pathway

    Get PDF
    BackgroundImmune-mediated hepatitis is a severe impendence to human health, and no effective treatment is currently available. Therefore, new, safe, low-cost therapies are desperately required. Berbamine (BE), a natural substance obtained primarily from Berberis vulgaris L, is a traditional herbal medicine with several bioactivities, such as antimicrobial and anticancer activities. Thymoquinone (TQ), a phytochemical molecule derived from the Nigella sativa plant's black cumin seeds, has attracted interest owing to itsanti-inflammatory, antioxidant, and anticancer properties.AimThis current study's aims was to examine the protective impacts of BE and TQ in Concanavalin A (ConA)- induced acute liver injury and the action's underlying mechanism.Methodssixty mice of both sexes were used and divided into four groups (each group with six mice) as follows: Group I obtained distilled water (negative control group). Group II received distilled water with a single dose of 0.1 ml ConA (20 mg/kg) on day 4 by retro-orbital route (model group). Groups III and IV received BE (30 mg/kg/day) and TQ (25 mg/kg/day), respectively, by oral gavage for four successive days, with a single dose of ConA (20 mg/kg) on day 4, then all animals were sacrificed after 8 h and prepared for liver and blood collection.ResultsConA administration increased the ALT, AST, TNF-α, INFγ, and NF-κB significantly (p < 0.001) in the model group. Both BE and TQ could reduce these parameters significantly (p < 0.001) in groups III and IV, respectively, compared to the model group.ConclusionBoth BE and TQ prominently attenuated ConA immune-mediated liver injury. These findings give a remarkable insight into developing a new therapeutic agent for treating hepatitis and other autoimmune diseases

    Melatonin Potentiates the Therapeutic Effects of Metformin in Women with Metabolic Syndrome

    No full text
    Objective: This study evaluated the effect of melatonin on the response of patients suffering from metabolic syndrome (MEBS) treated with metformin. Design: This study used two-armed groups in a double-blind, randomized controlled clinical trial. Materials and Methods: A randomized double-blind placebo-controlled study was carried out on female patients diagnosed as having MEBS, according to the International Diabetes Federation (IDF) diagnosing criteria of MEBS (2005), from the outpatient clinic in Al-Zahraa Teaching Hospital/Kut, Iraq. They were diagnosed utilizing laboratory and clinical investigations, then randomized into two groups. The first group (group A) was treated with metformin (500 mg) twice daily, in addition to a placebo formula once daily at bedtime for three months. The second group (group B) was treated with metformin (500 mg) twice daily after meals, in addition to melatonin (10 mg) once daily at bedtime for three months. Results: The treatment of patients with MEBS using metformin–melatonin showed an improvement in most MEBS components such as fasting serum glucose (FSG), lipid profile, and body mass index (BMI), in addition to a reduction in insulin resistance and hyperinsulinemia. Simultaneously, there were increments in serum uric acid (UA), leptin, prolactin (PRL), and estradiol levels, while serum progesterone level decreased. Furthermore, patients treated with metformin–placebo showed less improvement in the studied parameters compared to that produced due to the inclusion of melatonin in the treatment protocol. Conclusion: Melatonin improves the effect of metformin on several components of MEBS such as FSG, lipid profile, and BMI, in addition to insulin resistance and hyperinsulinemia, compared to metformin alone

    Green synthesis and characterization of terbium orthoferrite nanoparticles decorated with g-C3N4 for antiproliferative activity against human cancer cell lines (Glioblastoma, and Neuroblastoma)

    No full text
    Accordingly, employing plant extracts for the green synthesis of different nanoparticles (NPs) has caught the interest of scientists, and researchers due to the ease of accessibility, widespread distribution, and safety of plants. In the current study, a TbFeO3/g-C3N4 nanocomposite was made using a green chemistry technique that utilized grape juice, which acts as an active capping, and reducing agent to create NPs with well-organized biological characteristics. Several methods, including HRTEM, TEM, SEM, XRD, BET-BJH, and VSM, were employed to characterize the produced NPs. The XRD results indicated that the produced NPs had particles with an average size of 38.74 ± 2 nm, which the TEM examination verified. Additionally, the cytotoxicity of the NPs was examined to assess their anti-proliferative effects on the cancer cell lines T98, and SH-SY5. In the case of T98 cells, viability was about 60, 70 and 90% in concentration C1 to C4 respectively after 24 h of drug administration. And viability decreasing by pass the time. Also, viability reduce bout 65% in all concentration about SH-SY5Y cells, surprisingly only the first three concentrations, C1 to C3 caused cell death after 48 h of drug administration and in lower concentrations, the death rate should decrease with the passage of time, viability was about 80 and85% in C4 and C5 respectively

    Rapid microwave fabrication of new nanocomposites based on Tb-Co-O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water

    No full text
    Herein, a novel and stable Tb-Co-O nanocomposite photocatalyst is fabricated through a one-pot microwave route for 2 min (600 W, 20 s On, 60 s Off), which is introduced as UV/Visible light active catalysts in wastewater treatment. Employing various combined parameters of Tb:Co ratio, pH adjustment agents, chemical and natural templates, the resulting nanostructures displayed the intrinsic structure nature, narrow size distribution, good optical properties, and excellent photocatalytic efficiency. The formation of Tb-Co-O nanostructures and their features were verified via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and ultraviolet–visible diffuse reflection spectroscopy (DRS) technologies. Detailed physic-chemical measurements exhibited that all as-prepared nano-photocatalysts possesses both cubic (TbO1.81) and orthorhombic (TbCoO3) crystal structures. Furthermore, optical characterization by DRS developed light-sensitive channelization with band-gap energies at approximately 2.95 and 3.20 eV for Tb-Co-O nanocomposites. Finally, the photocatalytic studies of the resulting nanocomposites were compared by determining the elimination of Erythrosine (EY), Acid Violet 7 (AV7), and Acid Black 1(AB1) under UV and Visble light illumination. As a results, the TbCoO3/TbO1.81 nanocomposties with molar ratio of 1:3 (Tb:Co), valerian distillate as natural directing agent and ethylenediamine (en) as alkaline template yielded the optimum degradation percentage of 88 % for EY dye under the reaction condition of 10 ppm dye concentration in the presence UV light toward other pathways. Also, we proposed a mechanistic insight of photodegradation based on the radical scavengers, which revealed that h+ did the important role, and OH• and •O2− represented an irrelevant role in the degradation of EY. The current study offer an effective way for development of a high-efficiency Tb-Co-O photocatalyst in eliminating dyes from contaminant water

    Integration of Ultrastructural and Computational Approaches Reveals the Protective Effect of Astaxanthin against BPA-Induced Nephrotoxicity

    No full text
    Background: Bisphenol A (BPA) is an environmental contaminant that can induce deleterious organ effects. Human Cytochrome P450 CYP2C9 enzyme belongs to the essential xenobiotic-metabolizing enzymes, producing ROS as a byproduct. Astaxanthin (ATX) is a powerful antioxidant that protects organs and tissues from the damaging effects of oxidative stress caused by various diseases. Aim of the study: This study investigated the possible protective impacts of ATX against BPA-induced nephrotoxicity and its underlying mechanism. Materials and methods: Kidney tissues were isolated and examined microscopically from control, protected, and unprotected groups of rats to examine the potential protective effect of ATX against nephrotoxicity. Moreover, a molecular dynamic (MD) simulation was conducted to predict the performance of ATX upon binding to the active site of P450 CYP2C9 protein receptor as a potential mechanism of ATX protective effect. Results: Implemented computational methods revealed the possible underlying mechanism of ATX protection; the protective impact of ATX is mediated by inhibiting P450 CYP2C9 through binding to its dimeric state where the RMSF value for apo-protein and ATX-complex system were 5.720.57 and 1.040.41, respectively, implicating the ATX-complex system to have lesser variance in its residues, leading to the prevention of ROS excess production, maintaining the oxidant-antioxidant balance and re-establishing the proper mitochondrial functionality. Furthermore, the experimental methods validated in silico outcomes and revealed that ATX therapy effectively restored the typical histological architecture of pathological kidney tissues. Conclusions: ATX prevents BPA-induced nephrotoxicity by controlling oxidative imbalance and reversing mitochondrial dysfunction. These outcomes shed new light on the appropriate use of ATX as a treatment or prophylactic agent for these severe conditions

    Oncogenic Potential of Replication Factor C Subunit 4: Correlations with Tumor Progression and Assessment of Potential Inhibitors

    No full text
    Replication Factor C Subunit 4 (RFC4), an oncogene implicated in many human cancers, has yet to be extensively studied in many cancer types to determine its expression patterns and tumor tissue function. Various bioinformatics tools were used to analyze RFC4 as a potential oncogene and therapeutic target across many cancers. We first examined RFC4 expression levels in several human tumor types to determine relationships with tumor grade, stage, metastasis, and patient survival. We also examined RFC4’s genetic changes, epigenetic methylation, and effect on tumor microenvironment (TME) immune cell infiltration. We also analyzed RFC4’s connections with immunological checkpoints to identify potential molecular pathways involved in carcinogenesis. Our findings show that RFC4 is upregulated in several tumor types and associated with poor prognoses in many human cancers. This study shows that RFC4 significantly affects the tumor immunological microenvironment, specifically immune cell populations. Finally, we screened for RFC4-inhibiting pharmacological compounds with anti-cancer potential. This study fully elucidates RFC4’s carcinogenic activities, emphasizing its potential as a prognostic biomarker and a target for anti-cancer therapy

    A Comprehensive Pan-Cancer Analysis Identifies CEP55 as a Potential Oncogene and Novel Therapeutic Target

    No full text
    Emerging research findings have shown that a centrosomal protein (CEP55) is a potential oncogene in numerous human malignancies. Nevertheless, no pan-cancer analysis has been conducted to investigate the various aspects and behavior of this oncogene in different human cancerous tissues. Numerous databases were investigated to conduct a detailed analysis of CEP55. Initially, we evaluated the expression of CEP55 in several types of cancers and attempted to find the correlation between that and the stage of the examined malignancies. Then, we conducted a survival analysis to determine the relationship between CEP55 overexpression in malignancies and the patient’s survival. Furthermore, we examined the genetic alteration forms and the methylation status of this oncogene. Additionally, the interference of CEP55 expression with immune cell infiltration, the response to various chemotherapeutic agents, and the putative molecular mechanism of CEP55 in tumorigenesis were investigated. The current study found that CEP55 was upregulated in cancerous tissues versus normal controls where this upregulation was correlated with a poor prognosis in multiple forms of human cancers. Additionally, it influenced the level of different immune cell infiltration and several chemokines levels in the tumor microenvironment in addition to the response to several antitumor drugs. Herein, we provide an in-depth understanding of the oncogenic activities of CEP55, identifying it as a possible predictive marker as well as a specific target for developing anticancer therapies
    corecore