165 research outputs found

    Robust and Unbiased Variance of GLM Coefficients for Misspecified Autocorrelation and Hemodynamic Response Models in fMRI

    Get PDF
    As a consequence of misspecification of the hemodynamic response and noise variance models, tests on general linear model coe cients are not valid. Robust estimation of the variance of the general linear model (GLM) coecients in fMRI time series is therefore essential. In this paper an alternative method to estimate the variance of the GLM coe cients accurately is suggested and compared to other methods. The alternative, referred to as the sandwich, is based primarily on the fact that the time series are obtained from multiple exchangeable stimulus presentations. The analytic results show that the sandwich is unbiased. Using this result, it is possible to obtain an exact statistic which keeps the 5% false positive rate. Extensive Monte Carlo simulations show that the sandwich is robust against misspeci cation of the autocorrelations and of the hemodynamic response model. The sandwich is seen to be in many circumstances robust, computationally efficient, and flexible with respect to correlation structures across the brain. In contrast, the smoothing approach can be robust to a certain extent but only with specific knowledge of the circumstances for the smoothing parameter

    mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data

    Get PDF
    We present the R-package mgm for the estimation of k-order Mixed Graphical Models (MGMs) and mixed Vector Autoregressive (mVAR) models in high-dimensional data. These are a useful extensions of graphical models for only one variable type, since data sets consisting of mixed types of variables (continuous, count, categorical) are ubiquitous. In addition, we allow to relax the stationarity assumption of both models by introducing time-varying versions MGMs and mVAR models based on a kernel weighting approach. Time-varying models offer a rich description of temporally evolving systems and allow to identify external influences on the model structure such as the impact of interventions. We provide the background of all implemented methods and provide fully reproducible examples that illustrate how to use the package

    A Tutorial on Estimating Time-Varying Vector Autoregressive Models

    Get PDF
    Time series of individual subjects have become a common data type in psychological research. These data allow one to estimate models of within-subject dynamics, and thereby avoid the notorious problem of making within-subjects inferences from between-subjects data, and naturally address heterogeneity between subjects. A popular model for these data is the Vector Autoregressive (VAR) model, in which each variable is predicted as a linear function of all variables at previous time points. A key assumption of this model is that its parameters are constant (or stationary) across time. However, in many areas of psychological research time-varying parameters are plausible or even the subject of study. In this tutorial paper, we introduce methods to estimate time-varying VAR models based on splines and kernel-smoothing with/without regularization. We use simulations to evaluate the relative performance of all methods in scenarios typical in applied research, and discuss their strengths and weaknesses. Finally, we provide a step-by-step tutorial showing how to apply the discussed methods to an openly available time series of mood-related measurements

    Logistic regression and Ising networks: prediction and estimation when violating lasso assumptions

    Get PDF
    The Ising model was originally developed to model magnetisation of solids in statistical physics. As a network of binary variables with the probability of becoming 'active' depending only on direct neighbours, the Ising model appears appropriate for many other processes. For instance, it was recently applied in psychology to model co-occurrences of mental disorders. It has been shown that the connections between the variables (nodes) in the Ising network can be estimated with a series of logistic regressions. This naturally leads to questions of how well such a model predicts new observations and how well parameters of the Ising model can be estimated using logistic regressions. Here we focus on the high-dimensional setting with more parameters than observations and consider violations of assumptions of the lasso. In particular, we determine the consequences for both prediction and estimation when the sparsity and restricted eigenvalue assumptions are not satisfied. We explain by using the idea of connected copies (extreme multicollinearity) the fact that prediction becomes better when either sparsity or multicollinearity is not satisfied. We illustrate these results with simulations.Comment: to appear, Behaviormetrika, 201

    Applying a Dynamical Systems Model and Network Theory to Major Depressive Disorder

    Get PDF
    Mental disorders like major depressive disorder can be seen as complex dynamical systems. In this study we investigate the dynamic behaviour of individuals to see whether or not we can expect a transition to another mood state. We introduce a mean field model to a binomial process, where we reduce a dynamic multidimensional system (stochastic cellular automaton) to a one-dimensional system to analyse the dynamics. Using maximum likelihood estimation, we can estimate the parameter of interest which, in combination with a bifurcation diagram, reflects the expectancy that someone has to transition to another mood state. After validating the proposed method with simulated data, we apply this method to two empirical examples, where we show its use in a clinical sample consisting of patients diagnosed with major depressive disorder, and a general population sample. Results showed that the majority of the clinical sample was categorized as having an expectancy for a transition, while the majority of the general population sample did not have this expectancy. We conclude that the mean field model has great potential in assessing the expectancy for a transition between mood states. With some extensions it could, in the future, aid clinical therapists in the treatment of depressed patients.Comment: arXiv admin note: text overlap with arXiv:1610.0504

    Using Explainable Boosting Machine to Compare Idiographic and Nomothetic Approaches for Ecological Momentary Assessment Data

    Get PDF
    Previous research on EMA data of mental disorders was mainly focused on multivariate regression-based approaches modeling each individual separately. This paper goes a step further towards exploring the use of non-linear interpretable machine learning (ML) models in classification problems. ML models can enhance the ability to accurately predict the occurrence of different behaviors by recognizing complicated patterns between variables in data. To evaluate this, the performance of various ensembles of trees are compared to linear models using imbalanced synthetic and real-world datasets. After examining the distributions of AUC scores in all cases, non-linear models appear to be superior to baseline linear models. Moreover, apart from personalized approaches, group-level prediction models are also likely to offer an enhanced performance. According to this, two different nomothetic approaches to integrate data of more than one individuals are examined, one using directly all data during training and one based on knowledge distillation. Interestingly, it is observed that in one of the two real-world datasets, knowledge distillation method achieves improved AUC scores (mean relative change of +17\% compared to personalized) showing how it can benefit EMA data classification and performance.Comment: 13 pages, 2 figures, accepted on the symposium 'Intelligent Data Analysis' (2022

    Interpreting the Ising Model: The Input Matters

    Get PDF
    The Ising model is a model for pairwise interactions between binary variables that has become popular in the psychological sciences. It has been first introduced as a theoretical model for the alignment between positive (+1) and negative (-1) atom spins. In many psychological applications, however, the Ising model is defined on the domain {0,1}\{0,1\} instead of the classical domain {1,1}\{-1,1\}. While it is possible to transform the parameters of a given Ising model in one domain to obtain a statistically equivalent model in the other domain, the parameters in the two versions of the Ising model lend themselves to different interpretations and imply different dynamics, when studying the Ising model as a dynamical system. In this tutorial paper, we provide an accessible discussion of the interpretation of threshold and interaction parameters in the two domains and show how the dynamics of the Ising model depends on the choice of domain. Finally, we provide a transformation that allows to transform the parameters in an Ising model in one domain into a statistically equivalent Ising model in the other domain
    corecore