45 research outputs found

    Comparison between the Comet Assay and Fast Micromethod® for Measuring DNA Damage in HeLa Cells

    Get PDF
    The sensitivity and precision of the single cell gel electrophoresis (Comet) assay and Fast Micromethod® for DNA damage determinations in human HeLa cell line were compared. The first assay allows analysis of DNA breaks in individual cells while the second is a rapid and convenient procedure for DNA breaks determination in cell suspensions on single microplates. Both assays detect DNA strand breaks, alkali-labile sites and transient breaks occurring at sites of ongoing repair and might be applied for the assessment of surface water genotoxic potential as well as for clinical use. DNA damage in HeLa cells was induced by different doses of γ-rays generated by Cs137 (8 to 500 cGy), UV-C light (10 to 1000 J m-2) and by different concentrations of 4-nitroquinoline-V-oxide (0.026-2.6 μmol dm-3). Gamma rays induced a dose-depended response with the average Comet tail moment values from 7 mm for the negative control to 291 mm for 200 cGy, from 6.1 to 192 mm for 500 J m-2 of UV-C light and from 7.1 to 238 mm for 1.0 μmol dm-3 of 4-nitro-quinoline-N-oxide. The Fast Micromethod® strand scission factor varied from 0.010 for negative control to 0.701 for 500 cGy, from 0.019 to 1.196 for 1000 J m-2 and from 0.003 to 0.810 for 0.5 μmol dm-3 of 4-nitroquinoline-IV-oxide. Sensitivity was the same for both methods and in the case of 4-nitroquinoline-IV-oxide even better precision (lower variation coefficient) was achieved with the Fast Micromethod®. Since the time required for multiple analysis by the Fast Micromethod® is short (2 hours or less), its use in measuring DNA breakage in cells can be recommended for environmental genotoxicity monitoring

    Comparison between the Comet Assay and Fast Micromethod® for Measuring DNA Damage in HeLa Cells

    Get PDF
    The sensitivity and precision of the single cell gel electrophoresis (Comet) assay and Fast Micromethod® for DNA damage determinations in human HeLa cell line were compared. The first assay allows analysis of DNA breaks in individual cells while the second is a rapid and convenient procedure for DNA breaks determination in cell suspensions on single microplates. Both assays detect DNA strand breaks, alkali-labile sites and transient breaks occurring at sites of ongoing repair and might be applied for the assessment of surface water genotoxic potential as well as for clinical use. DNA damage in HeLa cells was induced by different doses of γ-rays generated by Cs137 (8 to 500 cGy), UV-C light (10 to 1000 J m-2) and by different concentrations of 4-nitroquinoline-V-oxide (0.026-2.6 μmol dm-3). Gamma rays induced a dose-depended response with the average Comet tail moment values from 7 mm for the negative control to 291 mm for 200 cGy, from 6.1 to 192 mm for 500 J m-2 of UV-C light and from 7.1 to 238 mm for 1.0 μmol dm-3 of 4-nitro-quinoline-N-oxide. The Fast Micromethod® strand scission factor varied from 0.010 for negative control to 0.701 for 500 cGy, from 0.019 to 1.196 for 1000 J m-2 and from 0.003 to 0.810 for 0.5 μmol dm-3 of 4-nitroquinoline-IV-oxide. Sensitivity was the same for both methods and in the case of 4-nitroquinoline-IV-oxide even better precision (lower variation coefficient) was achieved with the Fast Micromethod®. Since the time required for multiple analysis by the Fast Micromethod® is short (2 hours or less), its use in measuring DNA breakage in cells can be recommended for environmental genotoxicity monitoring

    Chemical Biology - A practical course

    No full text

    Adverse Effects in Aquatic Ecosystems: Genotoxicity as a Priority Measurement in: Biosensors for the Environmental Monitoring of Aquatic Systems - Bioanalytical and Chemical Methods for Endocrine Disruptors

    No full text
    Some chemical substances are capable of modifying genetic material and thereby also damaging it. Aquatic genotoxicity testing represents an important contribution to environmental research today. Sensitive testing methods for practical applications have been developed with reasonable certainty, which allow genotoxic (mutagenic) agents to be discovered in the environment. Risk levels for humans and the environment may be reliably assessed and the resulting consequences predicted

    Scaffold Hunter – Interactive Exploration of Chemical Space

    No full text
    Scaffold Hunter is a Java-based software tool for the analysis of structure-related biochemical data. It facilitates the interactive exploration of chemical space by enabling generation of and navigation in a scaffold tree hierarchy annotated with various data. The graphical visualization of structural relationships allows to analyze large data sets, e.g., to correlate chemical structure and biochemical activity
    corecore