1,020 research outputs found
Dreaming of atmospheres
Here we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for
the classification of exoplanetary emission spectra. Spectral retrievals of
exoplanetary atmospheres frequently requires the preselection of
molecular/atomic opacities to be defined by the user. In the era of
open-source, automated and self-sufficient retrieval algorithms, manual input
should be avoided. User dependent input could, in worst case scenarios, lead to
incomplete models and biases in the retrieval. The RobERt algorithm is based on
deep belief neural (DBN) networks trained to accurately recognise molecular
signatures for a wide range of planets, atmospheric thermal profiles and
compositions. Reconstructions of the learned features, also referred to as
`dreams' of the network, indicate good convergence and an accurate
representation of molecular features in the DBN. Using these deep neural
networks, we work towards retrieval algorithms that themselves understand the
nature of the observed spectra, are able to learn from current and past data
and make sensible qualitative preselections of atmospheric opacities to be used
for the quantitative stage of the retrieval process.Comment: ApJ accepte
A new approach to analysing HST spatial scans: the transmission spectrum of HD 209458 b
The Wide Field Camera 3 (WFC3) on Hubble Space Telescope (HST) is currently
one of the most widely used instruments for observing exoplanetary atmospheres,
especially with the use of the spatial scanning technique. An increasing number
of exoplanets have been studied using this technique as it enables the
observation of bright targets without saturating the sensitive detectors. In
this work we present a new pipeline for analyzing the data obtained with the
spatial scanning technique, starting from the raw data provided by the
instrument. In addition to commonly used correction techniques, we take into
account the geometric distortions of the instrument, whose impact may become
important when combined to the scanning process. Our approach can improve the
photometric precision for existing data and also push further the limits of the
spatial scanning technique, as it allows the analysis of even longer spatial
scans. As an application of our method and pipeline, we present the results
from a reanalysis of the spatially scanned transit spectrum of HD 209458 b. We
calculate the transit depth per wavelength channel with an average relative
uncertainty of 40 ppm. We interpret the final spectrum with T-Rex, our fully
Bayesian spectral retrieval code, which confirms the presence of water vapor
and clouds in the atmosphere of HD 209458 b. The narrow wavelength range limits
our ability to disentangle the degeneracies between the fitted atmospheric
parameters. Additional data over a broader spectral range are needed to address
this issue.Comment: 13 pages, 15 figures, 7 tables, Accepted for publication in Ap
Low temperature magnetization and the excitation spectrum of antiferromagnetic Heisenberg spin rings
Accurate results are obtained for the low temperature magnetization versus
magnetic field of Heisenberg spin rings consisting of an even number N of
intrinsic spins s = 1/2, 1, 3/2, 2, 5/2, 3, 7/2 with nearest-neighbor
antiferromagnetic (AF) exchange by employing a numerically exact quantum Monte
Carlo method. A straightforward analysis of this data, in particular the values
of the level-crossing fields, provides accurate results for the lowest energy
eigenvalue E(N,S,s) for each value of the total spin quantum number S. In
particular, the results are substantially more accurate than those provided by
the rotational band approximation. For s <= 5/2, data are presented for all
even N <= 20, which are particularly relevant for experiments on finite
magnetic rings. Furthermore, we find that for s > 1 the dependence of E(N,S,s)
on s can be described by a scaling relation, and this relation is shown to hold
well for ring sizes up to N = 80 for all intrinsic spins in the range 3/2 <= s
<= 7/2. Considering ring sizes in the interval 8 <= N <= 50, we find that the
energy gap between the ground state and the first excited state approaches zero
proportional to 1/N^a, where a = 0.76 for s = 3/2 and a = 0.84 for s = 5/2.
Finally, we demonstrate the usefulness of our present results for E(N,S,s) by
examining the Fe12 ring-type magnetic molecule, leading to a new, more accurate
estimate of the exchange constant for this system than has been obtained
heretofore.Comment: Submitted to Physical Review B, 10 pages, 10 figure
Photometric stability analysis of the Exoplanet Characterisation Observatory
Photometric stability is a key requirement for time-resolved spectroscopic
observations of transiting extrasolar planets. In the context of the Exoplanet
Characterisation Observatory (EChO) mission design, we here present and
investigate means of translating spacecraft pointing instabilities as well as
temperature fluctuation of its optical chain into an overall error budget of
the exoplanetary spectrum to be retrieved. Given the instrument specifications
as of date, we investigate the magnitudes of these photometric instabilities in
the context of simulated observations of the exoplanet HD189733b secondary
eclipse.Comment: submitted to MNRA
Quantum Phase Interference and Neel-Vector Tunneling in Antiferromagnetic Molecular Wheels
The antiferromagnetic molecular wheel Fe18 of eighteen exchange-coupled
Fe(III) ions has been studied by measurements of the magnetic torque, the
magnetization, and the inelastic neutron scattering spectra. The combined data
show that the low-temperature magnetism of Fe18 is very accurately described by
the Neel-vector tunneling (NVT) scenario, as unfolded by semiclassical theory.
In addition, the magnetic torque as a function of applied field exhibits
oscillations that reflect the oscillations in the NVT tunnel splitting with
field due to quantum phase interference.Comment: 5 pages, 4 figures, REVTEX4, to appear in PR
Ground-based NIR emission spectroscopy of HD189733b
We investigate the K and L band dayside emission of the hot-Jupiter HD
189733b with three nights of secondary eclipse data obtained with the SpeX
instrument on the NASA IRTF. The observations for each of these three nights
use equivalent instrument settings and the data from one of the nights has
previously reported by Swain et al (2010). We describe an improved data
analysis method that, in conjunction with the multi-night data set, allows
increased spectral resolution (R~175) leading to high-confidence identification
of spectral features. We confirm the previously reported strong emission at
~3.3 microns and, by assuming a 5% vibrational temperature excess for methane,
we show that non-LTE emission from the methane nu3 branch is a physically
plausible source of this emission. We consider two possible energy sources that
could power non-LTE emission and additional modelling is needed to obtain a
detailed understanding of the physics of the emission mechanism. The validity
of the data analysis method and the presence of strong 3.3 microns emission is
independently confirmed by simultaneous, long-slit, L band spectroscopy of HD
189733b and a comparison star.Comment: ApJ accepte
Exchange-coupling constants, spin density map, and Q dependence of the inelastic neutron scattering intensity in single-molecule magnets
The Q dependence of the inelastic neutron scattering (INS) intensity of
transitions within the ground-state spin multiplet of single-molecule magnets
(SMMs) is considered. For these transitions, the Q dependence is related to the
spin density map in the ground state, which in turn is governed by the
Heisenberg exchange interactions in the cluster. This provides the possibility
to infer the exchange-coupling constants from the Q dependence of the INS
transitions within the spin ground state. The potential of this strategy is
explored for the M = +-10 -> +- 9 transition within the S = 10 multiplet of the
molecule Mn12 as an example. The Q dependence is calculated for powder as well
as single-crystal Mn12 samples for various exchange-coupling situations
discussed in the literature. The results are compared to literature data on a
powder sample of Mn12 and to measurements on an oriented array of about 500
single-crystals of Mn12. The calculated Q dependence exhibits significant
variation with the exchange-coupling constants, in particular for a
single-crystal sample, but the experimental findings did not permit an
unambiguous determination. However, although challenging, suitable experiments
are within the reach of today's instruments.Comment: 11 pages, 6 figures, REVTEX4, to appear in PR
Detection of an atmosphere around the super-Earth 55 Cancri e
We report the analysis of two new spectroscopic observations of the
super-Earth 55 Cancri e, in the near infrared, obtained with the WFC3 camera
onboard the HST. 55 Cancri e orbits so close to its parent star, that
temperatures much higher than 2000 K are expected on its surface. Given the
brightness of 55 Cancri, the observations were obtained in scanning mode,
adopting a very long scanning length and a very high scanning speed. We use our
specialized pipeline to take into account systematics introduced by these
observational parameters when coupled with the geometrical distortions of the
instrument. We measure the transit depth per wavelength channel with an average
relative uncertainty of 22 ppm per visit and find modulations that depart from
a straight line model with a 6 confidence level. These results suggest
that 55 Cancri e is surrounded by an atmosphere, which is probably
hydrogen-rich. Our fully Bayesian spectral retrieval code, T-REx, has
identified HCN to be the most likely molecular candidate able to explain the
features at 1.42 and 1.54 m. While additional spectroscopic observations
in a broader wavelength range in the infrared will be needed to confirm the HCN
detection, we discuss here the implications of such result. Our chemical model,
developed with combustion specialists, indicates that relatively high mixing
ratios of HCN may be caused by a high C/O ratio. This result suggests this
super-Earth is a carbon-rich environment even more exotic than previously
thought.Comment: 10 pages, 10 figures, 4 tables, Accepted for publication in Ap
- …