1,033 research outputs found
Quantifying microcracks on fractured bone surfaces – Potential use in forensic anthropology
Bone fracture surface morphology (FSM) can provide valuable information on the cause of failure in forensic and archaeological applications and it depends primarily on three factors, the loading conditions (like strain rate), the ambient conditions (wet or dry bone material) and the quality of bone material itself. The quality of bone material evidently changes in taphonomy as a result of the decomposition process and that in turn is expected to affect FSM. Porcine bones were fractured by a standardised impact during the course of soft tissue decomposition, at 28-day intervals, over 140 days (equivalent to 638 cooling degree days). Measurements of the associated microcracks on the fractured cortical bone surfaces indicated a progressive increase in mean length during decomposition from around 180 μm–375 μm. The morphology of these microcracks also altered, from multiple intersecting microcracks emanating from a central point at 0–28 cumulative cooling degree days, to longer linear cracks appearing to track lamellae as soft tissue decomposition progressed. The implications of these findings are that taphonomic changes of bone may offer the real possibility of distinguishing perimortem and taphonomic damage and also provide a new surrogate parameter for estimation of post-mortem interval (PMI) in forensics
Design analysis of levitation facility for space processing applications
Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand
Aplikasi Pengukuran Risiko Transformasi Organisasi (Studi Kasus Pada Perusahaan Telekomunikasi)
. The aim of this study is to perform quantitative risk assessment oforganizational transformation at PT X and develop its risk mitigation. The design ofthis study based on business risk analysis model by Fekete (2000), which are consist 4steps: (1) risk identification; (2) qualitative analysis; (3) quantitative analysis; and (4)risk response. The result of study showed there are significance risks of organizationaltransformation at PT X with the biggest risk level in consecutive order are systemreadiness factor, organization factor, and culture factor
Sequence-independent activation of photocycloadditions using two colours of light
We exploit two reactive chromophores to establish sequence-independent photochemical activation, employing ortho-methyl benzaldehyde (oMBA) and N,N-(dimethylamino)pyrene aryl tetrazole (APAT) with N-(2-hydroxy)ethyl maleimide (NHEM), without any additives. Critically, the order of the irradiation sequence is irrelevant, as the shorter wavelength does not activate the higher wavelength activated species. Therefore, full sequence-independent λ-orthogonality is achieved through differences in both the reaction quantum yields (Φr,oMBA and Φr,APAT) and wavelength-dependent reactivity profiles of the employed chromophore
Bistability of Slow and Fast Traveling Waves in Fluid Mixtures
The appearence of a new type of fast nonlinear traveling wave states in
binary fluid convection with increasing Soret effect is elucidated and the
parameter range of their bistability with the common slower ones is evaluated
numerically. The bifurcation behavior and the significantly different
spatiotemporal properties of the different wave states - e.g. frequency, flow
structure, and concentration distribution - are determined and related to each
other and to a convenient measure of their nonlinearity. This allows to derive
a limit for the applicability of small amplitude expansions. Additionally an
universal scaling behavior of frequencies and mixing properties is found.
PACS: 47.20.-k, 47.10.+g, 47.20.KyComment: 4 pages including 5 Postscript figure
Final State Interactions and CP Violation in
Using chiral perturbation theory we calculate the imaginary parts of the form factors that arise from and
rescattering. We discuss their influence on CP violating variables in .Comment: ; 12 pages, 2 figures, TeX format; uses epsf.tex, tables.tex, and
phyzzx.te
- …