42 research outputs found
Beneficial effect of a daily continuous 8 hours artificial light exposition on ram spermatogenesis in Brazil
La spermatogĂ©nĂšse des bĂ©liers est trĂšs nettement amĂ©liorĂ©e lorsque ceux-ci sont soumis Ă une pĂ©riode dâĂ©clairement artificiel de 8 h par jour, avec 16 h dâobscuritĂ©. Le volume de lâĂ©jaculat et le nombre des spermato zoĂŻdes quâil contient sont augmentĂ©s, en moyenne et respectivement, de 42,6 et 56,9 %, alors que la proportion des spermatozoĂŻdes anormaux rĂ©gresse de 72 %.Spermatogenesis was highly improved when rams were submitted to an 8 hour artificial light exposition, with 16 hour darkness. Mean volume and sperm number of ejaculate were respectively increased by 42.6 and 56.9 % .while the proportion of abnormal sperm decreased by 72 %
Implications of Space-Time foam for Entanglement Correlations of Neutral Kaons
The role of invariance and consequences for bipartite entanglement of
neutral (K) mesons are discussed. A relaxation of leads to a modification
of the entanglement which is known as the effect. The relaxation of
assumptions required to prove the theorem are examined within the context
of models of space-time foam. It is shown that the evasion of the EPR type
entanglement implied by (which is connected with spin statistics) is
rather elusive. Relaxation of locality (through non-commutative geometry) or
the introduction of decoherence by themselves do not lead to a destruction of
the entanglement. So far we find only one model which is based on non-critical
strings and D-particle capture and recoil that leads to a stochastic
contribution to the space-time metric and consequent change in the neutral
meson bipartite entanglement. The lack of an omega effect is demonstrated for a
class of models based on thermal like baths which are generally considered as
generic models of decoherence
Entropy and universality of Cardy-Verlinde formula in dark energy universe
We study the entropy of a FRW universe filled with dark energy (cosmological
constant, quintessence or phantom). For general or time-dependent equation of
state the entropy is expressed in terms of energy, Casimir energy,
and . The correspondent expression reminds one about 2d CFT entropy only for
conformal matter. At the same time, the cosmological Cardy-Verlinde formula
relating three typical FRW universe entropies remains to be universal for any
type of matter. The same conclusions hold in modified gravity which represents
gravitational alternative for dark energy and which contains terms growing at
low curvature. It is interesting that BHs in modified gravity are more entropic
than in Einstein gravity. Finally, some hydrodynamical examples testing new
shear viscosity bound, which is expected to be the consequence of the
holographic entropy bound, are presented for the early universe in the plasma
era and for the Kasner metric. It seems that the Kasner metric provides a
counterexample to the new shear viscosity bound.Comment: LaTeX file, 39 pages, references are adde
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.
Black Hole Thermodynamics and Statistical Mechanics
We have known for more than thirty years that black holes behave as
thermodynamic systems, radiating as black bodies with characteristic
temperatures and entropies. This behavior is not only interesting in its own
right; it could also, through a statistical mechanical description, cast light
on some of the deep problems of quantizing gravity. In these lectures, I review
what we currently know about black hole thermodynamics and statistical
mechanics, suggest a rather speculative "universal" characterization of the
underlying states, and describe some key open questions.Comment: 35 pages, Springer macros; for the Proceedings of the 4th Aegean
Summer School on Black Hole