85 research outputs found

    M31* and its circumnuclear environment

    Get PDF
    We present a multiwavelength investigation of the circumnuclear environment of M31. Based on Chandra/ACIS data, we tightly constrain the X-ray luminosity of M31*, the central supermassive black hole of the galaxy, to be L (0.3-7 keV)<= 1.2x10^{36}erg/s, approximately 10^{-10} of the Eddington luminosity. From the diffuse X-ray emission, we characterize the circumnuclear hot gas with a temperature of ~0.3 keV and a density of ~0.1 cm^{-3}. In the absence of an active SMBH and recent star formation, the most likely heating source for the hot gas is Type Ia SNe. The presence of cooler, dusty gas residing in a nuclear spiral has long been known in terms of optical line emission and extinction. We further reveal the infrared emission of the nuclear spiral and evaluate the relative importance of various possible ionizing sources. We show evidence for interaction between the nuclear spiral and the hot gas, probably via thermal evaporation. This mechanism lends natural understandings to 1) the inactivity of M31*, in spite of a probably continuous supply of gas from outer disk regions, and 2) the launch of a bulge outflow of hot gas, primarily mass-loaded from the circumnuclear regions. One particular prediction of such a scenario is the presence of gas with intermediate temperatures arising from the conductive interfaces. The FUSE observations do show strong OVIλ\lambda1032 and 1038 absorption lines against the bulge starlight, but the effective OVI column density (~4x10^{14} cm^{-2}), may be attributed to foreground gas located in the bulge and/or the highly inclined disk of M31. Our study strongly argues that stellar feedback, particularly in the form of energy release from SNe Ia, may play an important role in regulating the evolution of SMBHs and the interstellar medium in galactic bulges.Comment: Submitted to MNRAS, 33 pages, 9 figures. Comments welcom

    A confirmed location in the Galactic halo for the high-velocity cloud 'chain A'

    Get PDF
    The high-velocity clouds of atomic hydrogen, discovered about 35 years ago, have velocities inconsistent with simple Galactic rotation models that generally fit the stars and gas in the Milky Way disk. Their origins and role in Galactic evolution remain poorly understood, largely for lack of information on their distances. The high-velocity clouds might result from gas blown from the Milky Way disk into the halo by supernovae, in which case they would enrich the Galaxy with heavy elements as they fall back onto the disk. Alternatively, they may consist of metal-poor gas -- remnants of the era of galaxy formation, accreted by the Galaxy and reducing its metal abundance. Or they might be truly extragalactic objects in the Local Group of galaxies. Here we report a firm distance bracket for a large high-velocity cloud, Chain A, which places it in the Milky Way halo (2.5 to 7 kiloparsecs above the Galactic plane), rather than at an extragalactic distance, and constrains its gas mass to between 10^5 and 2 times 10^6 solar masses.Comment: 8 pages, including 4 postscript figures. Letter to Nature, 8 July 199
    corecore