50 research outputs found
The lexical access of multiple words during a single fixation:overlapping access processes?
Since it has become increasingly difficult to tease apart the predictions of serial and parallel models of eye movement control during reading, we return to theunderlying theoretical question of whether parallel lexical processing of two words is, at the very least, psychologically plausible. Two horizontally aligned letter strings were presented simultaneously on a screen, the task being to decide whether they were physically identical or not. Even with presentation durations short enough to prohibit serial inspection of each word the results show clear lexical effects: high frequency word pairs were responded to faster and with fewer errors than low frequency words. Effects of lexicality, orthography and scanning direction were also found. The results suggest that two words can be processed at a lexical level in an overlapping fashion
The head or the verb:Is the lexical boost restricted to the head verb?
Four structural priming experiments investigated whether the lexical boost is due to the repeated head verb of the primed structure or due to the repetition of any verb, testing structural priming of ditransitive structures (The hotel owner decided to loan the tourist a tent/a tent to the tourist). In Experiments 1–3, we manipulated the repetition of the matrix verb (decided) that is not the syntactic head in the primed structure. The results showed abstract structural priming of the embedded ditransitive structure but the repetition of the matrix verb did not boost the priming. In addition to manipulating the repetition of the matrix verb, we also manipulated the head verb of the primed structure (loan) in Experiment 4. It showed a lexical boost with the repetition of the head verb but no boost with the repetition of the matrix verb. These results are consistent with the residual activation model, which only predicts a boost from the verb that is the head of the primed structure. They do not support models which predict that the repetition of any lexical material in a sentence boosts priming
An investigation into the lexical boost with nonhead nouns
In five structural priming experiments, we investigated lexical boost effects in the production of ditransitive sentences. Although the residual activation model of Pickering and Branigan (1998) suggests that a lexical boost should only occur with the repetition of a syntactic licensing head in ditransitive prepositional object (PO)/double object (DO) structures, Scheepers, Raffray, and Myachykov (2017) recently found that it also occurs with the repetition of nouns that are not syntactic heads. We manipulated the repetition of the subject (Experiments 1–3), and the verb phrase (VP) internal arguments (i.e., either theme or recipient, Experiments 4–5) in PO/DO structures. In Experiment 2, the verb was also repeated between prime and target, while in the other experiments it was not. Three different tasks for eliciting the target were employed: picture description via the oral completion of a sentence fragment (Experiments 1–2, and 4), oral completion of a sentence fragment with no visual context (Experiment 3), and oral production of a sentence from a given array of words and no visual context (Experiment 5). Priming occurred in all experiments and was stronger when the verb was repeated (Experiment 2) than when it was not (Experiment 1). However, none of the experiments showed evidence that priming was stronger when either the subject or one of the VP-internal arguments was repeated. These findings support the view that structural information is associated with syntactic heads (i.e., the verb), but not with nonheads such as the subject noun and the VP-internal arguments (Pickering & Branigan, 1998)
Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program
The James Webb Space Telescope will revolutionize transiting exoplanet
atmospheric science due to its capability for continuous, long-duration
observations and its larger collecting area, spectral coverage, and spectral
resolution compared to existing space-based facilities. However, it is unclear
precisely how well JWST will perform and which of its myriad instruments and
observing modes will be best suited for transiting exoplanet studies. In this
article, we describe a prefatory JWST Early Release Science (ERS) program that
focuses on testing specific observing modes to quickly give the community the
data and experience it needs to plan more efficient and successful future
transiting exoplanet characterization programs. We propose a multi-pronged
approach wherein one aspect of the program focuses on observing transits of a
single target with all of the recommended observing modes to identify and
understand potential systematics, compare transmission spectra at overlapping
and neighboring wavelength regions, confirm throughputs, and determine overall
performances. In our search for transiting exoplanets that are well suited to
achieving these goals, we identify 12 objects (dubbed "community targets") that
meet our defined criteria. Currently, the most favorable target is WASP-62b
because of its large predicted signal size, relatively bright host star, and
location in JWST's continuous viewing zone. Since most of the community targets
do not have well-characterized atmospheres, we recommend initiating preparatory
observing programs to determine the presence of obscuring clouds/hazes within
their atmospheres. Measurable spectroscopic features are needed to establish
the optimal resolution and wavelength regions for exoplanet characterization.
Other initiatives from our proposed ERS program include testing the instrument
brightness limits and performing phase-curve observations.(Abridged)Comment: This is a white paper that originated from an open discussion at the
Enabling Transiting Exoplanet Science with JWST workshop held November 16 -
18, 2015 at STScI (http://www.stsci.edu/jwst/science/exoplanets). Accepted
for publication in PAS
Detection of carbon monoxide's 4.6 micron fundamental band structure in WASP-39b's atmosphere with JWST NIRSpec G395H
Carbon monoxide (CO) is predicted to be the dominant carbon-bearing molecule in giant planet atmospheres and, along with water, is important for discerning the oxygen and therefore carbon-to-oxygen ratio of these planets. The fundamental absorption mode of CO has a broad, double-branched structure composed of many individual absorption lines from 4.3 to 5.1 μm, which can now be spectroscopically measured with JWST. Here we present a technique for detecting the rotational sub-band structure of CO at medium resolution with the NIRSpec G395H instrument. We use a single transit observation of the hot Jupiter WASP-39b from the JWST Transiting Exoplanet Community Early Release Science (JTEC ERS) program at the native resolution of the instrument (R ~ 2700) to resolve the CO absorption structure. We robustly detect absorption by CO, with an increase in transit depth of 264 ± 68 ppm, in agreement with the predicted CO contribution from the best-fit model at low resolution. This detection confirms our theoretical expectations that CO is the dominant carbon-bearing molecule in WASP-39b's atmosphere and further supports the conclusions of low C/O and supersolar metallicities presented in the JTEC ERS papers for WASP-39b
Detection of Carbon Monoxide in the Atmosphere of WASP-39b Applying Standard Cross-Correlation Techniques to JWST NIRSpec G395H Data
Carbon monoxide was recently reported in the atmosphere of the hot Jupiter
WASP-39b using the NIRSpec PRISM transit observation of this planet, collected
as part of the JWST Transiting Exoplanet Community Early Release Science (JTEC
ERS) Program. This detection, however, could not be confidently confirmed in
the initial analysis of the higher resolution observations with NIRSpec G395H
disperser. Here we confirm the detection of CO in the atmosphere of WASP-39b
using the NIRSpec G395H data and cross-correlation techniques. We do this by
searching for the CO signal in the unbinned transmission spectrum of the planet
between 4.6 and 5.0 m, where the contribution of CO is expected to be
higher than that of other anticipated molecules in the planet's atmosphere. Our
search results in a detection of CO with a cross-correlation function (CCF)
significance of when using a template with only lines. The CCF significance of the CO signal increases to when including in the template lines from additional CO isotopologues,
with the largest contribution being from . Our results
highlight how cross-correlation techniques can be a powerful tool for unveiling
the chemical composition of exoplanetary atmospheres from medium-resolution
transmission spectra, including the detection of isotopologues.Comment: Accepted for publication in The Astrophysical Journal Letter
JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b
Clouds are prevalent in many of the exoplanet atmospheres that have been
observed to date. For transiting exoplanets, we know if clouds are present
because they mute spectral features and cause wavelength-dependent scattering.
While the exact composition of these clouds is largely unknown, this
information is vital to understanding the chemistry and energy budget of
planetary atmospheres. In this work, we observe one transit of the hot Jupiter
WASP-17b with JWST's MIRI LRS and generate a transmission spectrum from 5-12
m. These wavelengths allow us to probe absorption due to the
vibrational modes of various predicted cloud species. Our transmission spectrum
shows additional opacity centered at 8.6 m, and detailed atmospheric
modeling and retrievals identify this feature as SiO(s) (quartz) clouds.
The SiO(s) clouds model is preferred at 3.5-4.2 versus a cloud-free
model and at 2.6 versus a generic aerosol prescription. We find the
SiO(s) clouds are comprised of small m particles,
which extend to high altitudes in the atmosphere. The atmosphere also shows a
depletion of HO, a finding consistent with the formation of
high-temperature aerosols from oxygen-rich species. This work is part of a
series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we
will use Guaranteed Time Observations to perform Deep Reconnaissance of
Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS).Comment: 19 pages, 7 figures, accepted for publication in ApJ
Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H
Measuring the abundances of carbon and oxygen in exoplanet atmospheres is
considered a crucial avenue for unlocking the formation and evolution of
exoplanetary systems. Access to an exoplanet's chemical inventory requires
high-precision observations, often inferred from individual molecular
detections with low-resolution space-based and high-resolution ground-based
facilities. Here we report the medium-resolution (R600) transmission
spectrum of an exoplanet atmosphere between 3-5 m covering multiple
absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST
NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an
average transit depth uncertainty of 221 ppm per spectroscopic bin, and present
minimal impacts from systematic effects. We detect significant absorption from
CO (28.5) and HO (21.5), and identify SO as the
source of absorption at 4.1 m (4.8). Best-fit atmospheric models
range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios.
These results, including the detection of SO, underscore the importance of
characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec
G395H as an excellent mode for time series observations over this critical
wavelength range.Comment: 44 pages, 11 figures, 3 tables. Resubmitted after revision to Natur
Early Release Science of the exoplanet WASP-39b with JWST NIRCam
Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet
atmospheres is a fundamental step towards constraining the dominant chemical
processes at work and, if in equilibrium, revealing planet formation histories.
Transmission spectroscopy provides the necessary means by constraining the
abundances of oxygen- and carbon-bearing species; however, this requires broad
wavelength coverage, moderate spectral resolution, and high precision that,
together, are not achievable with previous observatories. Now that JWST has
commenced science operations, we are able to observe exoplanets at previously
uncharted wavelengths and spectral resolutions. Here we report time-series
observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed
Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength
photometric light curves span 2.0 - 4.0 m, exhibit minimal systematics,
and reveal well-defined molecular absorption features in the planet's spectrum.
Specifically, we detect gaseous HO in the atmosphere and place an upper
limit on the abundance of CH. The otherwise prominent CO feature at 2.8
m is largely masked by HO. The best-fit chemical equilibrium models
favour an atmospheric metallicity of 1-100 solar (i.e., an enrichment
of elements heavier than helium relative to the Sun) and a sub-stellar
carbon-to-oxygen (C/O) ratio. The inferred high metallicity and low C/O ratio
may indicate significant accretion of solid materials during planet formation
or disequilibrium processes in the upper atmosphere.Comment: 35 pages, 13 figures, 3 tables, Nature, accepte
Early Release Science of the exoplanet WASP-39b with JWST NIRISS
Transmission spectroscopy provides insight into the atmospheric properties
and consequently the formation history, physics, and chemistry of transiting
exoplanets. However, obtaining precise inferences of atmospheric properties
from transmission spectra requires simultaneously measuring the strength and
shape of multiple spectral absorption features from a wide range of chemical
species. This has been challenging given the precision and wavelength coverage
of previous observatories. Here, we present the transmission spectrum of the
Saturn-mass exoplanet WASP-39b obtained using the SOSS mode of the NIRISS
instrument on the JWST. This spectrum spans m in wavelength and
reveals multiple water absorption bands, the potassium resonance doublet, as
well as signatures of clouds. The precision and broad wavelength coverage of
NIRISS-SOSS allows us to break model degeneracies between cloud properties and
the atmospheric composition of WASP-39b, favoring a heavy element enhancement
("metallicity") of the solar value, a sub-solar
carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen
(K/O) ratio. The observations are best explained by wavelength-dependent,
non-gray clouds with inhomogeneous coverage of the planet's terminator.Comment: 48 pages, 12 figures, 2 tables. Under review at Natur