21 research outputs found

    Racetrack-shape fixed field induction accelerator for giant cluster ions

    No full text
    A novel scheme for a racetrack-shape fixed field induction accelerator (RAFFIA) capable of accelerating extremely heavy cluster ions (giant cluster ions) is described. The key feature of this scheme is rapid induction acceleration by localized induction cells. Triggering the induction voltages provided by the signals from the circulating bunch allows repeated acceleration of extremely heavy cluster ions. The given RAFFIA example is capable of realizing the integrated acceleration voltage of 50 MV per acceleration cycle. Using 90° bending magnets with a reversed field strip and field gradient is crucial for assuring orbit stability in the RAFFIA

    Experimental Demonstration of the Induction Synchrotron

    No full text
    We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developedinduction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron
    corecore