864 research outputs found

    Do we expect light flavor sea-quark asymmetry also for the spin-dependent distribution functions of the nucleon?

    Get PDF
    After taking account of the scale dependence by means of the standard DGLAP evolution equation, the theoretical predictions of the chiral quark soliton model for the unpolarized and longitudinally polarized structure functions of the nucleon are compared with the recent high energy data. The theory is shown to explain all the qualitative features of the experiments, including the NMC data for F2p(x)−F2n(x)F_2^p (x) - F_2^n (x), F2n(x)/F2p(x)F_2^n (x) / F_2^p (x), the Hermes and NuSea data for dˉ(x)−uˉ(x)\bar{d}(x) - \bar{u}(x), the EMC and SMC data for g1p(x)g_1^p(x), g1n(x)g_1^n(x) and g1d(x)g_1^d(x). Among others, flavor asymmetry of the longitudinally polarized sea-quark distributions is a remarkable prediction of this model, i.e., it predicts that Δdˉ(x)−Δuˉ(x)=Cxα[dˉ(x)−uˉ(x)]\Delta \bar{d}(x) - \Delta \bar{u}(x) = C x^{\alpha} [ \bar{d}(x) - \bar{u}(x)] with a sizable negative coefficient C≃−2.0C \simeq -2.0 (and α≃0.12\alpha \simeq 0.12) in qualitative consistency with the recent semi-phenomenological analysis by Morii and Yamanishi.Comment: 14pages, including 5 eps_figures with epsbox.sty, late

    The role of orbital angular momentum in the proton spin

    Full text link
    The orbital angular momenta LuL^u and LdL^d of up and down quarks in the proton are estimated as functions of the energy scale as model-independently as possible, on the basis of Ji's angular momentum sum rule. This analysis indicates that Lu−LdL^u - L^d is large and negative even at low energy scale of nonperturbative QCD, in contrast to Thomas' similar analysis based on the refined cloudy bag model. We pursuit the origin of this apparent discrepancy and suggest that it may have a connection with the fundamental question of how to define quark orbital angular momenta in QCD.Comment: 14 pages, 3 figures, 1 table A slightly extended version to appear in Eur. Phys. J.

    Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model (I) -- phenomenological predictions --

    Full text link
    Theoretical predictions are given for the light-flavor sea-quark distributions including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken here of the SU(3) symmetry breaking effects due to the mass difference between the strange and nonstrange quarks. This effective mass difference Δms\Delta m_s between the strange and nonstrange quarks is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the {\it light-flavor sea-quark asymmetry} as exemplified by the observables dˉ(x)−uˉ(x),dˉ(x)/uˉ(x),Δuˉ(x)−Δdˉ(x)\bar{d} (x) - \bar{u} (x), \bar{d} (x) / \bar{u} (x), \Delta \bar{u} (x) - \Delta \bar{d} (x) as well as on the {\it particle-antiparticle asymmetry} of the strange quark distributions represented by s(x)−sˉ(x),s(x)/sˉ(x),Δs(x)−Δsˉ(x)s (x) - \bar{s} (x), s (x) / \bar{s} (x), \Delta s (x) - \Delta \bar{s} (x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for dˉ(x)−uˉ(x)\bar{d} (x) - \bar{u} (x), the E866 data for dˉ(x)/uˉ(x)\bar{d} (x) / \bar{u} (x), the CCFR data and Barone et al.'s fit for s(x)/sˉ(x)s (x) / \bar{s} (x) etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)â‰ȘΔsˉ(x)â‰Č0\Delta s (x) \ll \Delta \bar{s}(x) \lesssim 0 and Δdˉ(x)<0<Δuˉ(x)\Delta \bar{d}(x) < 0 < \Delta \bar{u}(x), although the verification of these predictions must await more elaborate experimental investigations in the near future.Comment: 36 pages, 20 EPS figures. The revised version accepted for publication in Phys. Rev. D. The title has been changed, and the body of the paper has been divided into two pieces, i.e.. the present one which discusses the main phenomenological predictions of the model and the other one which describes the detailed formulation of the flavor SU(3) chiral quark soliton model to predict light-flavor quark and antiquark distribution functions in the nucleo

    Chiral Symmetry and the Nucleon Structure Functions

    Get PDF
    The isospin asymmetry of the sea quark distribution as well as the unexpectedly small quark spin fraction of the nucleon are two outstanding discoveries recently made in the physics of deep-inelastic structure functions. We evaluate here the corresponding quark distribution functions within the framework of the chiral quark soliton model, which is an effective quark model of baryons maximally incorporating the most important feature of low energy QCD, i.e. the chiral symmetry and its spontaneous breakdown. It is shown that the model can explain qualitative features of the above-mentioned nucleon structure functions within a single framework, thereby disclosing the importance of chiral symmetry in the physics of high energy deep-inelastic scatterings.Comment: 20pages, LaTex, 5 Postscript figures A numerical error of the original version was corrected. The discussion on the regularization dependence of distribution functions has been added. A comparison with the low energy-scale parametrization of Gloeck, Reya and Vogt has been mad

    Parton distributions in the chiral quark model: a continuum computation

    Get PDF
    We compute the parton distributions for the chiral quark model. We present a new technique for performing such computations based on Green functions. This approach avoids a discretization of the spectrum. It therefore does not need any smoothing procedures. The results are similar to those of other groups, however the distributions peak at smaller xx.Comment: 19 pages, 8 Figures, LaTeX, some typos corrected, some additional comments in the conclusion

    New positivity bounds on polarized parton distributions in multicolored QCD

    Get PDF
    We derive new positivity bounds on spin-dependent parton distributions in multicolored QCD. They are stronger than Soffer inequality. We check that the new inequalities are stable under one-loop DGLAP evolution to higher normalization points.Comment: 4 pages, typos corrected, more details, references adde

    Magnetic moments of the SU(3) decuplet baryons in the chiral quark-soliton model

    Get PDF
    Magnetic moments of baryons are studied within the chiral quark soliton model with special emphasis on the decuplet of baryons. The model is used to identify all symmetry breaking terms proportional to msm_{\rm s}. Sum rules for the magnetic moments are derived. A ``model-independent'' analysis of the symmetry breaking terms is performed and finally model calculations are presented, which show the importance of the rotational 1/Nc1/N_{\rm c} corrections for cranking of the soliton.Comment: 22 pages, RevTex. The final version accepted for publication in Phys. Rev.

    Isovector unpolarized quark distribution in the nucleon in the large-N_c limit

    Get PDF
    We calculate the isovector (flavor-nonsinglet) unpolarized quark- and antiquark distributions in the nucleon at a low normalization point in the large-N_c limit. The nucleon is described as a soliton of the effective chiral theory. The isovector distribution appears in the next-to-leading order of the 1/N_c-expansion. Numerical results for the quark- and antiquark distributions compare well with the parametrizations of the data at a low normalization point. This large-N_c approach gives a flavor asymmetry of the antiquark distribution (violation of the Gottfried sum rule) in good agreement with the measurements.Comment: 31 pages, LaTeX, 1 table, 4 figures included using eps

    Exploring the proton spin structure

    Full text link
    Understanding the spin structure of the proton is one of the main challenges in hadronic physics. While the concepts of spin and orbital angular momentum are pretty clear in the context of non-relativistic quantum mechanics, the generalization of these concepts to quantum field theory encounters serious difficulties. It is however possible to define meaningful decompositions of the proton spin that are (in principle) measurable. We propose a summary of the present situation including recent developments and prospects of future developments.Comment: 8 pages, 1 figure, 2 tables, contribution to the proceedings of the DAE-BRNS High Energy Physics Symposium 2014, Dec 8-12, Guwahati, Indi
    • 

    corecore