20 research outputs found

    On Privacy-Enhanced Distributed Analytics in Online Social Networks

    Get PDF
    More than half of the world's population benefits from online social network (OSN) services. A considerable part of these services is mainly based on applying analytics on user data to infer their preferences and enrich their experience accordingly. At the same time, user data is monetized by service providers to run their business models. Therefore, providers tend to extensively collect (personal) data about users. However, this data is oftentimes used for various purposes without informed consent of the users. Providers share this data in different forms with third parties (e.g., data brokers). Moreover, user sensitive data was repeatedly a subject of unauthorized access by malicious parties. These issues have demonstrated the insufficient commitment of providers to user privacy, and consequently, raised users' concerns. Despite the emergence of privacy regulations (e.g., GDPR and CCPA), recent studies showed that user personal data collection and sharing sensitive data are still continuously increasing. A number of privacy-friendly OSNs have been proposed to enhance user privacy by reducing the need for central service providers. However, this improvement in privacy protection usually comes at the cost of losing social connectivity and many analytics-based services of the wide-spread OSNs. This dissertation addresses this issue by first proposing an approach to privacy-friendly OSNs that maintains established social connections. Second, approaches that allow users to collaboratively apply distributed analytics while preserving their privacy are presented. Finally, the dissertation contributes to better assessment and mitigation of the risks associated with distributed analytics. These three research directions are treated through the following six contributions. Conceptualizing Hybrid Online Social Networks: We conceptualize a hybrid approach to privacy-friendly OSNs, HOSN. This approach combines the benefits of using COSNs and DOSN. Users can maintain their social experience in their preferred COSN while being provided with additional means to enhance their privacy. Users can seamlessly post public content or private content that is accessible only by authorized users (friends) beyond the reach of the service providers. Improving the Trustworthiness of HOSNs: We conceptualize software features to address users' privacy concerns in OSNs. We prototype these features in our HOSN}approach and evaluate their impact on the privacy concerns and the trustworthiness of the approach. Also, we analyze the relationships between four important aspects that influence users' behavior in OSNs: privacy concerns, trust beliefs, risk beliefs, and the willingness to use. Privacy-Enhanced Association Rule Mining: We present an approach to enable users to apply efficiently privacy-enhanced association rule mining on distributed data. This approach can be employed in DOSN and HOSN to generate recommendations. We leverage a privacy-enhanced distributed graph sampling method to reduce the data required for the mining and lower the communication and computational overhead. Then, we apply a distributed frequent itemset mining algorithm in a privacy-friendly manner. Privacy Enhancements on Federated Learning (FL): We identify several privacy-related issues in the emerging distributed machine learning technique, FL. These issues are mainly due to the centralized nature of this technique. We discuss tackling these issues by applying FL in a hierarchical architecture. The benefits of this approach include a reduction in the centralization of control and the ability to place defense and verification methods more flexibly and efficiently within the hierarchy. Systematic Analysis of Threats in Federated Learning: We conduct a critical study of the existing attacks in FL to better understand the actual risk of these attacks under real-world scenarios. First, we structure the literature in this field and show the research foci and gaps. Then, we highlight a number of issues in (1) the assumptions commonly made by researchers and (2) the evaluation practices. Finally, we discuss the implications of these issues on the applicability of the proposed attacks and recommend several remedies. Label Leakage from Gradients: We identify a risk of information leakage when sharing gradients in FL. We demonstrate the severity of this risk by proposing a novel attack that extracts the user annotations that describe the data (i.e., ground-truth labels) from gradients. We show the high effectiveness of the attack under different settings such as different datasets and model architectures. We also test several defense mechanisms to mitigate this attack and conclude the effective ones

    User Label Leakage from Gradients in Federated Learning

    Full text link
    Federated learning enables multiple users to build a joint model by sharing their model updates (gradients), while their raw data remains local on their devices. In contrast to the common belief that this provides privacy benefits, we here add to the very recent results on privacy risks when sharing gradients. Specifically, we propose Label Leakage from Gradients (LLG), a novel attack to extract the labels of the users' training data from their shared gradients. The attack exploits the direction and magnitude of gradients to determine the presence or absence of any label. LLG is simple yet effective, capable of leaking potential sensitive information represented by labels, and scales well to arbitrary batch sizes and multiple classes. We empirically and mathematically demonstrate the validity of our attack under different settings. Moreover, empirical results show that LLG successfully extracts labels with high accuracy at the early stages of model training. We also discuss different defense mechanisms against such leakage. Our findings suggest that gradient compression is a practical technique to prevent our attack

    Verification of single-person access in a mantrap portal using RGB-D images

    Full text link
    Automatic entrance systems are increasingly gaining importance to guarantee security in e.g. critical infrastructure. A pipeline is presented which verifies that only a single, authorized subject can enter a secured area. Verification scenarios are carried out by using a set of RGB-D images. Features, invariant to rotation and pose are used and classified by different metrics to be applied in real-time. The performance was evaluated by using scenarios in which the system was attacked by a second subject. The results show that the presented approach outerperforms competitive methods. It concludes with a summary of strengths and weaknesses and gives an outlook for future work

    Efficient Privacy-Preserving Recommendations based on Social Graphs

    Full text link

    Label Leakage from Gradients in Distributed Machine Learning

    Full text link

    Text localization in born-digital images of advertisements

    Full text link
    Localizing text in images is an important step in a number of applications and fundamental for optical character recognition. While born-digital text localization might look similar to other complex tasks in this field, it has certain distinct characteristics. Our novel approach combines individual strengths of the commonly used methods: stroke width transform and extremal regions and combines them with a method based on edge-based morphologically growing. We present a parameterfree method with high flexibility to varying text sizes and colorful image elements. We evaluate our method on a novel image database of different retail prospects, containing textual product information. Our results show a higher f-score than competitive methods on that particular task

    Enhancing Privacy via Hierarchical Federated Learning

    Full text link
    Federated learning suffers from several privacy-related issues that expose the participants to various threats. A number of these issues are aggravated by the centralized architecture of federated learning. In this paper, we discuss applying federated learning on a hierarchical architecture as a potential solution. We introduce the opportunities for more flexible decentralized control over the training process and its impact on the participants’ privacy. Furthermore, we investigate possibilities to enhance the efficiency and effectiveness of defense and verification methods

    Tweet beyond the Cage: A Hybrid Solution for the Privacy Dilemma in Online Social Networks

    Full text link
    corecore