13 research outputs found

    Relations between the SNO and the Super Kamiokande solar neutrino rates

    Get PDF
    By comparing the neutrino spectra measured by SNO and Super Kamiokande, we obtain inequalities between the ratios of observed rate to SSM rate for the two experiments. These inequalities apply to a possibly energy-dependent reduction of the SSM flux and to the case of neutrino oscillations. We use them to examine the relationship between the two experiments expected for the MSW and ``Just-So" oscillation scenarios.Comment: 8 pages + 3 figures, REVTeX, uuencoded file created on a VMS syste

    Higgs particle detection using jets

    Full text link
    We study the possibility of detecting the Higgs boson in the intermediate mass range via its two jet channel. We consider only Higgs bosons produced in association with a ttˉt \bar{t} pair. Both tt and tˉ\bar{t} are required to decay semileptonically to reduce the QCD background. The signal is compared with the main background, ttˉ+2t \bar{t} + 2 jets, after appropriate cuts. A sizable signal above background is seen in our simulation at the parton level. Use of the ttˉZt\bar{t}Z channel with Z Z decaying to l+ll^+ l^- is suggested for eliminating theoretical uncertainties in determining the ttˉHt \bar{t}H signal.Comment: 10 pages, Fig.1 a,b,c,d(surve on request), plain tex, PVAM-HEP-93-

    Nonet Symmetry and Two-Body Decays of Charmed Mesons

    Full text link
    The decay of charmed mesons into pseudoscalar (P) and vector (V) mesons is studied in the context of nonet symmetry. We have found that it is badly broken in the PP channels and in the P sector of the PV channels as expected from the non-ideal mixing of the \eta and the \eta'. In the VV channels, it is also found that nonet symmetry does not describe the data well. We have found that this discrepancy cannot be attributed entirely to SU(3) breaking at the usual level of 20--30%. At least one, or both, of nonet and SU(3) symmetry must be very badly broken. The possibility of resolving the problem in the future is also discussed.Comment: 9 pages, UTAPHY-HEP-

    Searching for the MSW Enhancement

    Full text link
    We point out that the length scale associated with the MSW effect is the radius of the Earth. Therefore to verify matter enhancement of neutrino oscillations, it will be necessary to study neutrinos passing through the Earth. For the parameters of MSW solutions to the solar neutrino problem, the only detectable effects occur in a narrow band of energies from 5 to 10 MeV. We propose that serious consideration be given to mounting an experiment at a location within 9.5 degrees of the equator.Comment: 10 pages, RevTe

    Semi-Empirical Bound on the Chlorinr-37 Solar Neutrino Experiment

    Full text link
    The Kamiokande measurement of energetic Boron-8 neutrinos from the sun is used to set a lower bound on the contribution of the same neutrinos to the signal in the \Chlorine\ experiment. Implications for Beryllium-7 neutrinos are discussed.Comment: Latex, 6 pages + 1 postscript figure (included). UTAPHY-HEP-

    Implications of New Gallex Results for the MSW Solution of the Solar Neutrino Problem

    Full text link
    We compare the implications for 7Be and pp neutrinos of the two MSW fits to the new GALLEX solar neutrino measurements . Small mixing angle solutions tend to suppress the former as electron-neutrinos, but not the latter, and large angle solutions tend to reduce both by about a factor of 2. The consequences for BOREXINO and similar solar neutrino--electron scattering experiments are discussed.Comment: 7 pages (plus 3 figures available upon request) UTAPHY-HEP-

    Global Analysis with SNO: Toward the Solution of the Solar Neutrino Problem

    Full text link
    We perform a global analysis of the latest solar neutrino data including the SNO result on the CC-event rate. This result further favors the LMA solution of the solar neutrino problem. The best fit values of parameters we find are: \Delta m^2 = (4.8 - 5.0)10^{-5} eV^2, tan^2 \theta = 0.35 - 0.38, f_B = 1.08 - 1.12, and f_{hep} = 1 - 4. With respect to this best fit the LOW solution is accepted at 90% C.L.. The Vacuum oscillation solution with \Delta m^2 = 1.4 10^{-10} eV^2, gives good fit of the data provided that the boron neutrino flux is substantially smaller than the SSM flux (f_B \sim 0.5). The SMA solution is accepted only at 3\sigma level. We find that vacuum oscillations to sterile neutrino, VAC(sterile), with f_B \sim 0.5 also give rather good global fit of the data. All other sterile solutions are strongly disfavored. We check the quality of the fit by constructing the pull-off diagrams of observables. Predictions for the day-night asymmetry, spectrum distortion and NC/CC ratio at SNO are calculated. In the best fit points of the global solutions we find: A_{DN}^{CC} \approx (7 - 8)% for LMA, \sim 3% for LOW, and (2 - 3)% for SMA. It will be difficult to see the distortion of the spectrum expected for LMA as well as LOW solutions. However, future SNO spectral data can significantly affect the VAC and SMA solutions. We also calculate expectations for the BOREXINO rate.Comment: 35 pages, latex, 9 figures; results of analysis slightly changed due to different treatment of the hep neutrino flux; predictions for NC/CC ratio and Borexino rate adde
    corecore