62 research outputs found

    Analytical ground state for the three-band Hubbard model

    Full text link
    For the calculation of charge excitations as those observed in, e.g., photo-emission spectroscopy or in electron-energy loss spectroscopy, a correct description of ground-state charge properties is essential. In strongly correlated systems like the undoped cuprates this is a highly non-trivial problem. In this paper we derive a non-perturbative analytical approximation for the ground state of the three-band Hubbard model on an infinite, half filled CuO_2 plane. By comparison with Projector Quantum Monte Carlo calculations it is shown that the resulting expressions correctly describe the charge properties of the ground state. Relations to other approaches are discussed. The analytical ground state preserves size consistency and can be generalized for other geometries, while still being both easy to interpret and to evaluate.Comment: REVTeX, 8 pages, 6 figures, to appear in Phys. Rev.

    Muzeologija kao znanstvena disciplina i njezina primjena u svakodnevnom muzejskom radu

    Get PDF
    Muzeologija predstavlja i predmet teorije i opsežnu metodologiju za praktičnu primjenu. Ukazuje se na to da je muzej kao suvremena ustanova poseban i uvelike se razlikuje od drugih ustanova - arhiva, biblioteka i baza podataka - koje se također bave baštinom. Nakon kratkog opisa obilježja muzeologije i njezina mjesta unutar sustava znanosti iznosi se strukturirani okvir koji pomaže p r i analizi i razumijevanju njezine složene i uvelike međuovisne prirode. Naglašava se potreba istraživanja i obrazovanja u muzeologiji na akademskoj razini, i naposljetku, iznosi se nekoliko primjera njezine primjene u svakodnevnoj praksi

    Realistic description of electron-energy loss spectroscopy for One-Dimensional Sr2_2CuO3_3

    Full text link
    We investigate the electron-energy loss spectrum of one-dimensional undoped CuO3_{3} chains within an extended multi-band Hubbard model and an extended one-band Hubbard model, using the standard Lanczos algorithm. Short-range intersite Coulomb interactions are explicitly included in these models, and long-range interactions are treated in random-phase approximation. The results for the multi-band model with standard parameter values agree very well with experimental spectra of Sr2_{2}CuO3_{3}. In particular, the width of the main structure is correctly reproduced for all values of momentum transfer. It is shown for both models that intersite Coulomb interactions mainly lead to an energy shift of the spectra. We find no evidence for enhanced intersite interactions in Sr2_{2}CuO3_{3}.Comment: 4 pages, 4 figure

    The dynamics of a hole in a CuO_4 plaquette: electron energy-loss spectroscopy of Li_2CuO_2

    Get PDF
    We have measured the energy and momentum dependent loss function of Li_2CuO_2 single crystals by means of electron energy-loss spectroscopy in transmission. Using the same values for the model parameters, the low-energy features of the spectrum as well as published Cu 2p_(3/2) x-ray photoemission data of Li_2CuO_2 are well described by a cluster model that consists of a single CuO_4 plaquette only. This demonstrates that charge excitations in Li_2CuO_2 are strongly localized.Comment: 5 pages, 5 figure

    Effects of Ribosomal Protein S10 Flexible Loop Mutations on Tetracycline and Tigecycline Susceptibility of Escherichia coli

    Get PDF
    Tigecycline is a tetracycline derivative that is being used as an antibiotic of last resort. Both tigecycline and tetracycline bind to the small (30S) ribosomal subunit and inhibit translation. Target mutations leading to resistance to these antibiotics have been identified both in the 16S ribosomal RNA and in ribosomal proteins S3 and S10 (encoded by the rpsJ gene). Several different mutations in the S10 flexible loop tip residue valine 57 (V57) have been observed in tigecycline-resistant Escherichia coli isolates. However, the role of these mutations in E. coli has not yet been characterized in a defined genetic background. In this study, we chromosomally integrated 10 different rpsJ mutations into E. coli, resulting in different exchanges or a deletion of S10 V57, and investigated the effects of the mutations on growth and tigecycline/tetracycline resistance. While one exchange, V57K, decreased the minimal inhibitory concentration (MIC) (Etest) to tetracycline to 0.75 μg/ml (compared to 2 μg/ml in the parent strain) and hence resulted in hypersensitivity to tetracycline, most exchanges, including the ones reported previously in resistant isolates (V57L, V57D, and V57I) resulted in slightly increased MICs to tigecycline and tetracycline. The strongest increase was observed for the V57L mutant, with a MIC (Etest) to tigecycline of 0.5 μg/ml (compared to 0.125 μg/ml in the parent strain) and a MIC to tetracycline of 4.0 μg/ml. Nevertheless, none of these exchanges increased the MIC to the extent observed in previously described clinical tigecycline-resistant isolates. We conclude that, next to S10 mutations, additional mutations are necessary in order to reach high-level tigecycline resistance in E. coli. In addition, our data reveal that mutants carrying S10 V57 exchanges or deletion display growth defects and, in most cases, also thermosensitivity. The defects are particularly strong in the V57 deletion mutant, which is additionally cold-sensitive. We hypothesize that the S10 loop tip residue is critical for the correct functioning of S10. Both the S10 flexible loop and tigecycline are in contact with helix h31 of the 16S rRNA. We speculate that exchanges or deletion of V57 alter the positioning of h31, thereby influencing both tigecycline binding and S10 function

    One-dimensional dynamics of the d-electrons in α\alpha'-NaV2_{2}O5_{5}

    Get PDF
    We have studied the electronic properties of the ladder compound α\alpha'-NaV2_{2}O5_{5}, adopting a joint experimental and theoretical approach. The momentum-dependent loss function was measured using electron energy-loss spectroscopy in transmission. The optical conductivity derived from the loss function by a Kramers-Kronig analysis agrees well with our results from LSDA+U band-structure calculations upon application of an antiferromagnetic alignment of the V~3dxyd_{xy} spins along the legs and an on-site Coulomb interaction U of between 2 and 3 eV. The decomposition of the calculated optical conductivity into contributions from transitions between selected energy regions of the DOS reveals the origin of the observed anisotropy of the optical conductivity. In addition, we have investigated the plasmon excitations related to transitions between the vanadium states within an effective 16 site vanadium cluster model. Good agreement between the theoretical and experimental loss function was obtained using the hopping parameters derived from the tight binding fit to the band-structure and moderate Coulomb interactions between the electrons within the ab plane.Comment: 23 pages, 8 figures; submitted to PR
    corecore