2 research outputs found

    Towards Understanding the Mechanism of Contrastive Learning via Similarity Structure: A Theoretical Analysis

    Full text link
    Contrastive learning is an efficient approach to self-supervised representation learning. Although recent studies have made progress in the theoretical understanding of contrastive learning, the investigation of how to characterize the clusters of the learned representations is still limited. In this paper, we aim to elucidate the characterization from theoretical perspectives. To this end, we consider a kernel-based contrastive learning framework termed Kernel Contrastive Learning (KCL), where kernel functions play an important role when applying our theoretical results to other frameworks. We introduce a formulation of the similarity structure of learned representations by utilizing a statistical dependency viewpoint. We investigate the theoretical properties of the kernel-based contrastive loss via this formulation. We first prove that the formulation characterizes the structure of representations learned with the kernel-based contrastive learning framework. We show a new upper bound of the classification error of a downstream task, which explains that our theory is consistent with the empirical success of contrastive learning. We also establish a generalization error bound of KCL. Finally, we show a guarantee for the generalization ability of KCL to the downstream classification task via a surrogate bound

    Denoising Cosine Similarity: A Theory-Driven Approach for Efficient Representation Learning

    Full text link
    Representation learning has been increasing its impact on the research and practice of machine learning, since it enables to learn representations that can apply to various downstream tasks efficiently. However, recent works pay little attention to the fact that real-world datasets used during the stage of representation learning are commonly contaminated by noise, which can degrade the quality of learned representations. This paper tackles the problem to learn robust representations against noise in a raw dataset. To this end, inspired by recent works on denoising and the success of the cosine-similarity-based objective functions in representation learning, we propose the denoising Cosine-Similarity (dCS) loss. The dCS loss is a modified cosine-similarity loss and incorporates a denoising property, which is supported by both our theoretical and empirical findings. To make the dCS loss implementable, we also construct the estimators of the dCS loss with statistical guarantees. Finally, we empirically show the efficiency of the dCS loss over the baseline objective functions in vision and speech domains
    corecore