3 research outputs found

    Modeling of Coal Spontaneous Fire in A Large-Scale Stockpile

    Get PDF
    The increasing need for energy consumption has resulted in the use of energy sources in coal continuing to increase. The transportation and distribution activities of coal also cause the pile to be exposed to heat when it is in a pile. Due to the kinetic characteristics of low-rank coal, the pile is very susceptible to spontaneous fire processes. Of course, this spontaneous fire phenomenon harms the safety and economic aspects of the coal pile. This study aims to model finite elements using Multiphysics simulation to determine the effect of the relative humidity of the pile on the temperature distribution of large-scale coal piles. Thus, handling methods and things that must be considered in storing and transporting coal piles can be formulated. Thermal phenomena modelling in coal piles is modeled using COMSOL Multiphysics software. The simulation is carried out by varying relative humidity of the environmental conditions (ambient). The simulation results show that this parameter can change the level of vulnerability of the pile to burn at an earlier time

    Effect of the Heat Transfer Surface on Prevention of Spontaneous Combustion of Coal

    Get PDF
    The increased use of coal for power generation has increased the demand for low-rank coal, such as lignite and sub-bituminous coal, and during its supply, it may need to be stored for long periods. Because low-quality coal is more susceptible to spontaneous combustion than high-quality coal, its storage could potentially cause work-related accidents. One method being developed to control the temperature of stored coal to prevent spontaneous combustion is the immersion of heat exchangers in coal piles. This method can be used to control the temperature during both the storage and transportation processes. The purpose of this study was to test this method and, in particular, study the effect of changes in the heat-exchange surface area on the effectiveness of temperature control. An experiment was set up to control the temperature of a laboratory-scale coal pile using a heat exchanger made from copper tubes. Coal samples were placed in a cylindrical container with a spiral-shaped heat exchanger, placed in the center of the cylindrical container, and cooled with ~27o seawater. Tests were carried out using several configurations of heat exchanger dimensions to determine the effect of changing the ratio of heat-exchange surface area to volume of combustible material. The test results showed that greater heat-exchange surface area produced a greater amount of cooling load and temperature difference
    corecore