22 research outputs found

    Robot-assisted pancreatoduodenectomy with preservation of the vascular supply for autologous islet cell isolation and transplantation: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>For patients with chronic pancreatitis presenting with medically intractable abdominal pain, surgical intervention may be the only treatment option. However, extensive pancreatic resections are typically performed open and are associated with a substantial amount of postoperative pain, wound complications and long recovery time. Minimally invasive surgery offers an avenue to improve results; however, current limitations of laparoscopic surgery render its application in the setting of chronic pancreatitis technically demanding. Additionally, pancreatic resections are associated with a high incidence of diabetes. Transplantation of islets isolated from the resected pancreas portion offers a way to prevent post-surgical diabetes; however, preservation of the vascular supply during pancreatic resection, which determines islet cell viability, is technically difficult using current laparoscopic approaches. With recent advances in the surgical field, robotic surgery now provides a means to overcome these obstacles to achieve the end goals of pain relief and preserved endocrine function. We present the first report of a novel, minimally invasive robotic approach for resection of the pancreatic head that preserves vascular supply and enables the isolation of a high yield of viable islets for transplantation.</p> <p>Case presentation</p> <p>A 35-year old Caucasian woman presented with intractable chronic abdominal pain secondary to chronic pancreatitis, with a stricture of her main pancreatic duct at the level of the ampulla of Vater and distal dilatation. She was offered a robotic-assisted pylorus-preserving pancreatoduodenectomy and subsequent islet transplantation, to both provide pain relief and preserve insulin-secretory reserves.</p> <p>Conclusion</p> <p>We present a novel, minimally invasive robotic approach for resection of the pancreatic head with complete preservation of the vascular supply, minimal warm ischemia time (less than three minutes) and excellent islet recovery (134,727 islet equivalent). Our patient is currently pain-free with normal glycemic control. Robot-assisted pylorus-preserving pancreatoduodenectomy and autologous islet transplantation can be safely performed and has the potential to minimize operative traumas as well as to partially preserve endocrine function. Results from this case report suggest that this dual procedure should be considered as a treatment option for patients with chronic pancreatitis at earlier stages of the disease, before irreversible islet loss occurs.</p
    corecore