43 research outputs found

    Theory of ultrathin films at metal-ceramic interfaces

    Get PDF
    A theoretical model for understanding the formation of interfacial thin films is presented, which combines density functional theory calculations for interface energies with thermodynamic modeling techniques for multicomponent bulk systems. The theory is applied to thin film formation in VC-doped WC-Co cemented carbides. It is predicted that ultrathin VC films may exist in WC/Co interfaces at the high temperature sintering conditions where most of the WC grain growth occurs, which provides an explanation of the grain growth inhibiting effect of VC additions in the WC-Co system

    Implications of the band gap problem on oxidation and hydration in acceptor-doped barium zirconate

    Full text link
    Charge carrier concentrations in acceptor-doped proton-conducting perovskites are to a large extent determined by the hydration and oxidation of oxygen vacancies, which introduce protons and holes, respectively. First-principles modeling of these reactions involves calculation of formation energies of charged defects, which requires an accurate description of the band gap and the position of the band edges. Since density-functional theory (DFT) with local and semi-local exchange-correlation functionals (LDA and GGA) systematically fails to predict these quantities this can have serious implications on the modeling of defect reactions. In this study we investigate how the description of band gap and band edge positions affects the hydration and oxidation in acceptor-doped BaZrO3_3. First-principles calculations are performed in combination with thermodynamic modeling in order to obtain equilibrium charge carrier concentrations at different temperatures and partial pressures. Three different methods have been considered: DFT with both semi-local (PBE) and hybrid (PBE0) exchange-correlation functionals, and many-body perturbation theory within the G0W0G_0W_0-approximation. All three methods yield similar results for the hydration reaction, which are consistent with experimental findings. For the oxidation reaction, on the other hand, there is a qualitative difference. PBE predicts the reaction to be exothermic while the two others predict an endothermic behavior. Results from thermodynamic modeling are compared with available experimental data, such as enthalpies, concentrations and conductivities, and only the results obtained with PBE0 and G0W0G_0W_0, with an endothermic oxidation behavior, give a satisfactory agreement with experiments.Comment: 15 pages, 12 figures + supplementary material (2 pages

    Theoretical study of interface structure and energetics in semicoherent Fe(001)/MX(001) systems (M=Sc, Ti, V, Cr, Zr, Nb, Hf, Ta; X=C or N)

    Get PDF
    We perform a systematic ab initio study of the electronic and atomic structure of semicoherent interfaces between bcc Fe and NaCl MX (M=Sc, Ti, V, Cr, Zr, Nb, Hf, Ta; X=C or N). The interface energetics is accessed by using a Peierls-Nabarro framework, in which ab initio data for the chemical interactions across the interface are combined with a continuum description to account for the elastic distortions. The key factors to the trends in the interface energy are identified and discussed with respect to the size of the misfit and the electronic structure of the MX phase. Our approach shows that the inclusion of lattice misfit can have a significant contribution to the interface energy (up to 1.5 J/m2) and must therefore be thoroughly accounted for in the interface description. The results will have important bearings on our ability to understand and describe precipitate stability in steels

    First-principles investigation of the stability of MN and CrMN precipitates under coherency strains in alpha-Fe (M = V, Nb, Ta)

    Get PDF
    We perform a systematic ab initio study of the interface energetics of thin coherent rocksalt (nacl) structured MN and tetragonal CrMN films in bcc Fe (M = V, Nb, Ta), motivated by the vital role of MN and CrMN precipitates for the long-term creep resistance in 9%-12%Cr steels. The similarities and differences in the work of separations and the elastic costs for the coherency strains are identified, and the possibility for formation of coherent films are discussed. Our findings provide valuable information of the interface energetics, which in continuation can be combined with thermodynamical modeling to obtain a better understanding of the initial nucleation stage of the MN and CrMN precipitates, and their influence on the long-term microstructural evolution in 9%-12%Cr steels

    Size and shape of oxygen vacancies and protons in acceptor-doped barium zirconate

    Get PDF
    The defect induced chemical expansion in acceptor-doped barium zirconate is investigated using density-functional theory (DFT) calculations. The two defect species involved in the hydration reaction, the +2 charged oxygen vacancy and the proton interstitial forming a hydroxide ion, are considered both as free defects and in association with the dopants Y, In, Sc and Ga. The defect induced strain tensor lambda is introduced, which provides a natural generalisation of the ordinary chemical expansion to three dimensions and to anisotropic distortions. Both the addition of a vacancy and a proton cause anisotropic distortions and a net contraction of the lattice, indicating that both the vacancy and the hydroxide ion are smaller than the oxygen ion. The contraction is considerably larger for the vacancy and the net effect in hydration, when a vacancy is filled and two protons are added, is an expansion, consistent with the experimental findings. The effect of the dopants on the chemical expansion in hydration is found to be quite small, even if it is assumed that both the vacancy and the proton are fully associated with a dopant atom in the lattice

    Oxygen vacancy segregation and space-charge effects in grain boundaries of dry and hydrated BaZrO3

    Get PDF
    A space-charge model is applied to describe the equilibrium effects of segregation of double-donor oxygen vacancies to grain boundaries in dry and wet acceptor-doped samples of the perovskite oxide BaZrO3. The grain boundary core vacancy concentrations and electrostatic potential barriers resulting from different vacancy segregation energies are evaluated. Density-functional calculations on vacancy segregation to the mirror-symmetric \Sigma 3 (112) [-110] tilt grain boundary are also presented. Our results indicate that oxygen vacancy segregation can be responsible for the low grain boundary proton conductivity in BaZrO3 reported in the literature

    Polaronic contributions to oxidation and hole conductivity in acceptor-doped BaZrO3

    Get PDF
    Acceptor-doped perovskite oxides like BaZrO3 are showing great potential as materials for renewable energy technologies where hydrogen acts an energy carrier, such as solid oxide fuel cells and hydrogen separation membranes. While ionic transport in these materials has been investigated intensively, the electronic counterpart has received much less attention and further exploration in this field is required. Here, we use density functional theory (DFT) to study hole polarons and their impact on hole conductivity in Y-doped BaZrO3. Three different approaches have been used to remedy the self-interaction error of local and semilocal exchange-correlation functionals: DFT + U, pSIC-DFT, and hybrid functionals. Self-trapped holes are found to be energetically favorable by about -0.1 eV and the presence of yttrium results in further stabilization. Polaron migration is predicted to occur through intraoctahedral transfer and polaron rotational processes, which are associated with adiabatic barriers of about 0.1 eV. However, the rather small energies associated with polaron formation and migration suggest that the hole becomes delocalized and bandlike at elevated temperatures. These results together with an endothermic oxidation reaction [A. Lindman, P. Erhart, and G. Wahnstrom, Phys. Rev. B 91, 245114 (2015)] yield a picture that is consistent with experimental data for the hole conductivity. The results we present here provide new insight into hole transport in acceptor-doped BaZrO3 and similar materials, which will be of value in the future development of sustainable technologies

    Theoretical modeling of defect segregation and space-charge formation in the BaZrO3 (210) 001 tilt grain boundary

    Get PDF
    Density-functional theory (DFT) has been used to determine the structure and interface energy of different rigid body translations (RBTs) of the (210)10011 grain boundary (GB) in BaZrO3. There exist several different stable structures with almost equally low interfacial energy. Segregation energies of protons and oxygen vacancies have been determined for the most stable (210)10011 grain boundary structure. The results suggest that both defect species favor segregation to the same site at the boundary interface with minimum segregation energies of - 1.45 eV and - 1.32 eV for vacancies and protons respectively. The segregation energies have been used in a thermodynamic space-charge model to obtain equilibrium defect concentrations and space-charge potentials at a 10% dopant concentration. Space-charge,potential barriers around 0.65 V were obtained at intermediate temperatures under hydrated conditions, where protons are the main contributor to the excess core charge. The potential is slightly lower under dry conditions. (C) 2013 Elsevier B.V. All rights reserved

    DYNASOR -- A tool for extracting dynamical structure factors and current correlation functions from molecular dynamics simulations

    Get PDF
    Perturbative treatments of the lattice dynamics are widely successful for many crystalline materials, their applicability is, however, limited for strongly anharmonic systems, metastable crystal structures and liquids. The full dynamics of these systems can, however, be accessed via molecular dynamics (MD) simulations using correlation functions, which includes dynamical structure factors providing a direct bridge to experiment. To simplify the analysis of correlation functions, here the dynasor package is presented as a flexible and efficient tool that enables the calculation of static and dynamical structure factors, current correlation functions as well as their partial counterparts from MD trajectories. The dynasor code can handle input from several major open source MD packages and thanks to its C/Python structure can be readily extended to support additional codes. The utility of dynasor is demonstrated via examples for both solid and liquid single and multi-component systems. In particular, the possibility to extract the full temperature dependence of phonon frequencies and lifetimes is emphasized

    Path Integral Treatment of Proton Transport Processes in BaZrO3

    Get PDF
    Nuclear quantum effects on proton transfer and reorientation in BaZrO3 is investigated theoretically using the ab initio path-integral molecular-dynamics simulation technique. The result demonstrates that adding quantum fluctuations has a large effect on, in particular, the transfer barrier. The corresponding rates and diffusion coefficient are evaluated using the path-centroid transition state theory. In contrast with what is found assuming classical mechanics for the nuclear motion, the reorientation step becomes rate limiting below 600 K
    corecore