7 research outputs found

    A Strategy for the Sequential Recovery of Biomacromolecules from Red Macroalgae Porphyra umbilicalis K\ufctzing

    Get PDF
    A nondestructive, multicomponent fractionation strategy has been developed to extract proteins and polysaccharides from the red macroalgae Porphyra umbilicalis collected along the west coast of Sweden and cultivated indoors under controlled conditions. First, a protein-rich fraction was extracted in an ice-cold alkaline solution. The overall protein content in Porphyra umbilicalis was estimated to be 30.6% of the dry weight, and out of that, 15.0% could be recovered. Water-soluble polysaccharides were then extracted from the insoluble residual fraction using sequential alkaline and acidic treatments at 90 \ub0C for 4 h. Spectroscopic and chromatographic analyses of the polysaccharide fractions show that high-molecular-weight carrageenans were obtained from the alkaline extraction and a galactose-rich pectin substance was obtained from the acidic extraction. The insoluble fraction remaining after all extraction steps was rich in cellulose. An elemental analysis of Porphyra umbilicalis via scanning electron microscopy with energy-dispersive X-ray spectrometry (SEM-EDS) showed the presence of C, O, Na, Ca, Mg, Al, Cl, and S. However, no heavy metals or other toxic elements, such as Pb, Hg, and As, were found

    Composition and structure of cell wall ulvans recovered from Ulva spp. along the Swedish west coast

    Get PDF
    The cell wall polysaccharide ulvan was isolated from two species of the seaweed Ulva collected along the Swedish west coast. Acidic extraction was benchmarked against hot water extraction with enzymatic purification and against commercial ulvan. Extracted ulvan contained 11–18 % g/g of ash, some protein (up to 1.3 % g N/g) but minimal colored impurities. The ulvans had high molecular weights (660,000–760,000 g/mol) and were composed of 77–79 % g/g carbohydrates, mainly rhamnose, xylose, glucose, glucuronic acid, and iduronic acid. The extraction protocol and the ulvan source strongly impact the molecular weight and the chemical composition. Acidic extraction caused almost complete desulfation of the isolated ulvan while the other method preserved a significant degree of SO3 substituents. Elemental analysis of ash remaining after thermal degradation showed presence of common mineral elements such as Na, Ca, Mg, Al, and K, but none of the heavy metals Pb, Hg, or As

    Harvest Time Can Affect the Optimal Yield and Quality of Sea Lettuce (Ulva fenestrata) in a Sustainable Sea-Based Cultivation

    Get PDF
    Seaweed biomass is a renewable resource with multiple applications. Sea-based cultivation of seaweeds can provide high biomass yields, low construction, operation, and maintenance costs and could offer an environmentally and economically sustainable alternative to land-based cultivations. The biochemical profile of sea-grown biomass depends on seasonal variation in environmental factors, and the optimization of harvest time is important for the quality of the produced biomass. To identify optimal harvest times of Swedish sea-based cultivated sea lettuce (Ulva fenestrata), this study monitored biomass yield, morphology, chemical composition, fertility, and biofouling at five different harvesting times in April – June 2020. The highest biomass yields (approximately 1.2 kg fw [m rope]–1) were observed in late spring (May). The number and size of holes in the thalli and the amount of fertile and fouled tissue increased with prolonged growth season, which together led to a significant decline in both biomass yield and quality during summer (June). Early spring (April) conditions were optimal for obtaining high fatty acid, protein, biochar, phenolic, and pigment contents in the biomass, whereas carbohydrate and ash content, as well as essential and non-essential elements, increased later in the growth season. Our study results show that the optimal harvest time of sea-based cultivated U. fenestrata depends on the downstream application of the biomass and must be carefully selected to balance yield, quality, and desired biochemical contents to maximize the output of future sea-based algal cultivations in the European Northern Hemisphere

    Effects of irradiance, temperature, nutrients, and pCO2 on the growth and biochemical composition of cultivated Ulva fenestrata

    Get PDF
    Ulva fenestrata is an economically and ecologically important green algal species with a large potential in seaweed aquaculture due to its high productivity, wide environmental tolerance, as well as interesting functional and nutritional properties. Here, we performed a series of manipulative cultivation experiments in order to investigate the effects of irradiance (50, 100, and 160\ua0μmol photons m−2\ua0s−1), temperature (13 and 18\ua0\ub0C), nitrate (< 5, 150, and 500\ua0μM), phosphate (< 1 and 50\ua0μM), and pCO2 (200, 400, and 2500\ua0ppm) on the relative growth rate and biochemical composition (fatty acid, protein, phenolic, ash, and biochar content) in indoor tank cultivation of Swedish U. fenestrata. High irradiance and low temperature were optimal for the growth of this northern hemisphere U. fenestrata strain, but addition of nutrients or changes in pCO2 levels were not necessary to increase growth. Low irradiance resulted in the highest fatty acid, protein, and phenolic content, while low temperature had a negative effect on the fatty acid content but a positive effect on the protein content. Addition of nutrients (especially nitrate) increased the fatty acid, protein, and phenolic content. High nitrate levels decreased the total ash content of the seaweeds. The char content of the seaweeds did not change in response to any of the manipulated factors, and the only significant effect of changes in pCO2 was a negative relationship with phenolic content. We conclude that the optimal cultivation conditions for Swedish U. fenestrata are dependent on the desired biomass traits (biomass yield or biochemical composition)

    Cultivation conditions affect the monosaccharide composition in Ulva fenestrata

    Get PDF
    In recent years, the interest in using seaweed for the sustainable production of commodities has been increasing as seaweeds contain many potentially worthwhile compounds. Thus, the extraction and refining processes of interesting compounds from seaweeds is a hot research topic but has been found to have problems with profitability for novel applications. To increase the economic potential of refining seaweed biomass, the content of the compounds of interest should be maximized, which can potentially be achieved through optimization of cultivation conditions. In this study, we studied how the monosaccharide composition of the green seaweed species Ulva fenestrata is influenced by the abiotic factors; irradiance, temperature, nitrate, phosphate, and pCO2. It was evident that lower nitrate concentration and cultivation at elevated temperature increased monosaccharide contents. A 70% increase in iduronic acid and a 26% increase in rhamnose content were seen under elevated irradiance and temperature conditions, though the absolute differences in monosaccharide concentration were small. Irradiance and nitrate impacted the ratio between iduronic and rhamnose, which is an indicator of the ulvan structure. These results could potentially be utilized to coax the ulvan towards specific bioactivities, and thus have a considerable impact on a potential biorefinery centered around Ulva.\ua0\ua9 2020, The Author(s)
    corecore