17 research outputs found

    Association of PTPN22 1858 single-nucleotide polymorphism with rheumatoid arthritis in a German cohort: higher frequency of the risk allele in male compared to female patients

    Get PDF
    The functional single-nucleotide polymorphism (SNP) of the gene PTPN22 is a susceptibility locus for rheumatoid arthritis (RA). The study presented here describes the association of the PTPN22 1858T allele with RA in a German patient cohort; 390 patients with RA and 349 controls were enrolled in the study. For 123 patients, clinical and radiographic documentation over 6 years was available from the onset of disease. Genotyping of the PTPN22 1858 SNP was performed using an restriction fragment length polymorphism PCR-based genotyping assay. The odds ratio to develop RA was 2.57 for carriers of the PTPN22 1858T allele (95% confidence interval (CI) 1.85–3.58, p < 0.001), and 5.58 for homozygotes (95% CI 1.85–16.79). The PTPN22 1858T allele was significantly associated not only with rheumatoid factor (RF) and anti-cyclic citrullinated peptide (CCP) positive RA, but also with RF and anti-CCP negative disease. The frequency of the PTPN22 1858T allele was increased disproportionately in male patients (53.8% compared to 33.0% in female patients, p < 0.001), and the resulting odds ratio for male carriers was increased to 4.47 (95% CI 2.5–8.0, p < 0.001). Moreover, within the male patient population, the rare allele was significantly associated with the HLA-DRB1 shared epitope (p = 0.01). No significant differences in disease activity or Larsen scores were detected. The results provide further evidence that the PTPN22 1858T allele is associated with RA irrespective of autoantibody production. The increased frequency of the risk allele in male patients and its association with the shared epitope indicate that the genetic contribution to disease pathogenesis might be more prominent in men

    Failure of catecholamines to shift T-cell cytokine responses toward a Th2 profile in patients with rheumatoid arthritis

    Get PDF
    To further understand the role of neuro-immunological interactions in the pathogenesis of rheumatoid arthritis (RA), we studied the influence of sympathetic neurotransmitters on cytokine production of T cells in patients with RA. T cells were isolated from peripheral blood of RA patients or healthy donors (HDs), and stimulated via CD3 and CD28. Co-incubation was carried out with epinephrine or norepinephrine in concentrations ranging from 10(-5 )M to 10(-11 )M. Interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-4, and IL-10 were determined in the culture supernatant with enzyme-linked immunosorbent assay. In addition, IFN-γ and IL-10 were evaluated with intracellular cytokine staining. Furthermore, basal and agonist-induced cAMP levels and catecholamine-induced apoptosis of T cells were measured. Catecholamines inhibited the synthesis of IFN-γ, TNF-α, and IL-10 at a concentration of 10(-5 )M. In addition, IFN-γ release was suppressed by 10(-7 )M epinephrine. Lower catecholamine concentrations exerted no significant effect. A reduced IL-4 production upon co-incubation with 10(-5 )M epinephrine was observed in RA patients only. The inhibitory effect of catecholamines on IFN-γ production was lower in RA patients as compared with HDs. In RA patients, a catecholamine-induced shift toward a Th2 (type 2) polarised cytokine profile was abrogated. Evaluation of intracellular cytokines revealed that CD8-positive T cells were accountable for the impaired catecholaminergic control of IFN-γ production. The highly significant negative correlation between age and catecholamine effects in HDs was not found in RA patients. Basal and stimulated cAMP levels in T-cell subsets and catecholamine-induced apoptosis did not differ between RA patients and HDs. RA patients demonstrate an impaired inhibitory effect of catecholamines on IFN-γ production together with a failure to induce a shift of T-cell cytokine responses toward a Th2-like profile. Such an unfavorable situation is a perpetuating factor for inflammation

    Ex Vivo Homeostatic Proliferation of CD4 +

    No full text
    corecore