16 research outputs found

    Improved radioimmunolocalization of human tumor xenografts following subcutaneous delivery of monoclonal antibodies

    Full text link
    The localization of a radiolabeled murine monoclonal antibody reactive with choriocarcinomas to human choriocarcinoma xenografts following intravenous and subcutaneous injection was evaluated by gamma scanning and tissue sampling. Tumor xenografts were established in the popliteal node region of athymic nude mice after repeated innoculations of the hind foot pads with BEWO choriocarcinoma cells. In dual label specific antibody studies, tumor/non tumor uptake ratios following subcutaneous (resulting in considerable intralymphatic uptake) injection of 131 I-5F9.3 were significantly higher than those achieved post simultaneous intravenous injection of 125 I-5F9.3. Double label experiments with 131 I-5F9.3 and a nonspecific antibody, 125 I-UPC-10, following subcutaneous injection, demonstrated that the high localization to popliteal region tumors was largely due to antibody specificity. Gamma scans following subcutaneous antibody administration of specific antibody to tumor bearing animals showed tumors soon after subcutaneous injection, at times earlier than those typically seen following intravenous delivery. Similar subcutaneous injections showed little normal nodal uptake in BALB/c control animals on gamma scans. No correlation was seen between tumor localization by specific antibody between the intravenous and intralymphatic routes, implying a difference in the mechanisms of tumor uptake of antibody by these two routes. The subcutaneous approach to antibody delivery offers advantages over intravenous delivery in tumors of human origin, including higher tumor/non tumor ratios and earlier imaging times. This was true even though these tumors were many times larger than normal lymph nodes. This subcutaneous delivery advantage should be exploitable in imaging nodal metastases of human tumors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46825/1/259_2004_Article_BF00256630.pd

    Proton dynamics in cancer

    Get PDF
    Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth

    An Inhibitor of the F1 Subunit of ATP Synthase (IF1) Modulates the Activity of Angiostatin on the Endothelial Cell Surface

    Get PDF
    Angiostatin binds to endothelial cell (EC)-surface F1-F0 ATP synthase, leading to inhibition of EC3 migration and proliferation during tumor angiogenesis. This has led to a search for angiostatin-mimetics specific for this enzyme. A naturally occurring protein that binds to the F1 subunit of ATP synthase and blocks ATP hydrolysis in mitochondria is Inhibitor of F1 (IF1). The present study explores the effect of IF1 on cell surface ATP synthase. IF1 protein bound to purified F1 ATP synthase and inhibited F1-dependent ATP hydrolysis consistent with its reported activity in studies of mitochondria. While exogenous IF1 did not inhibit ATP production on the surface of EC, it did conserve ATP on the cell surface, particularly at low extracellular pH. IF1 inhibited ATP hydrolysis but not ATP synthesis, in contrast to angiostatin, which inhibited both. In cell-based assays used to model angiogenesis in vitro, IF1 did not inhibit EC differentiation to form tubes and only slightly inhibited cell proliferation compared to angiostatin. From these data, we conclude that inhibition of ATP synthesis is necessary for an anti-angiogenic outcome in cell-based assays. We propose that IF1 is not an angiostatin-mimetic, but it can serve a protective role for EC in the tumor microenvironment. This protection may be overridden in a concentration-dependent manner by angiostatin. In support of this hypothesis, we demonstrate that angiostatin blocks IF1 binding to ATP synthase, and abolishes its ability to conserve ATP. These data suggest that there is a relationship between the binding sites of IF1 and angiostatin on ATP synthase and that IF1 could be employed to modulate angiogenesis

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    The H +

    No full text
    corecore