5 research outputs found
MULTISCALE MOLECULAR MODELING STUDIES OF THE DYNAMICS AND CATALYTIC MECHANISMS OF IRON(II)- AND ZINC(II)-DEPENDENT METALLOENZYMES
Enzymes are biological systems that aid in specific biochemical reactions. They lower the reaction barrier, thus speeding up the reaction rate. A detailed knowledge of enzymes will not be achievable without computational modeling as it offers insight into atomistic details and catalytic species, which are crucial to designing enzyme-specific inhibitors and impossible to gain experimentally. This dissertation employs advanced multiscale computational approaches to study the dynamics and reaction mechanisms of non-heme Fe(II) and 2-oxoglutarate (2OG) dependent oxygenases, including AlkB, AlkBH2, TET2, and KDM4E, involved in DNA and histone demethylation. It also focuses on Zn(II) dependent matrix metalloproteinase-1 (MMP-1), which helps collagen degradation. Chapter 2 investigates the substrate selectivity and dynamics on the enzyme-substrate complexes of DNA repair enzymes, AlkB and FTO. Chapter 3 unravels the mechanisms and effects of dynamics on the demethylation of 3-methylcytosine substrate by AlkB and AlkBH2 enzymes. The results imply that the nature of DNA and conformational dynamics influence the electronic structure of the iron center during demethylation. Chapter 4 delineates how second-coordination and long-range residue mutations affect the oxidation of 5-methylcytosine substrate to 5-hydroxymethylcytosine by TET2 enzyme. The results reveal that mutations affect DNA binding/interactions and the energetic contributions of residues stabilizing key catalytic species. Chapter 5 describes the reparation of unnatural alkylated substrates by TET2, their effects on second-coordination interactions and long-range correlated motions in TET2. The study reveals that post-hydroxylation reactions occur in aqueous solution outside the enzyme environment. Chapter 6 establishes how applying external electric fields (EEFs) enhances specificity of KDM4E for C—H over N—H activation during dimethylated arginine substrate demethylation. The results reveal that applying positive EEFs parallel to Fe=O bond enhances C—H activation rate, while inhibiting the N—H one. Chapter 7 addresses the formation of catalytically competent MMP-1·THP complex of MMP-1. The studies reveal the role of MMP-1’s catalytic domain a-helices, the linker, and changes in coordination states of catalytic Zn(II) during the transition. Overall, the presented results contribute to the in-depth understanding of the fundamental mechanisms of the studied enzymes and provide a background for developing enzyme-specific inhibitors against the associated disorders and diseases
Unusual catalytic strategy by non-heme Fe(ii)/2-oxoglutarate-dependent aspartyl hydroxylase AspH
Biocatalytic C-H oxidation reactions are of important synthetic utility, provide a sustainable route for selective synthesis of important organic molecules, and are an integral part of fundamental cell processes. The multidomain non-heme Fe(ii)/2-oxoglutarate (2OG) dependent oxygenase AspH catalyzes stereoselective (3R)-hydroxylation of aspartyl- and asparaginyl-residues. Unusually, compared to other 2OG hydroxylases, crystallography has shown that AspH lacks the carboxylate residue of the characteristic two-His-one-Asp/Glu Fe-binding triad. Instead, AspH has a water molecule that coordinates Fe(ii) in the coordination position usually occupied by the Asp/Glu carboxylate. Molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies reveal that the iron coordinating water is stabilized by hydrogen bonding with a second coordination sphere (SCS) carboxylate residue Asp721, an arrangement that helps maintain the six coordinated Fe(ii) distorted octahedral coordination geometry and enable catalysis. AspH catalysis follows a dioxygen activation-hydrogen atom transfer (HAT)-rebound hydroxylation mechanism, unusually exhibiting higher activation energy for rebound hydroxylation than for HAT, indicating that the rebound step may be rate-limiting. The HAT step, along with substrate positioning modulated by the non-covalent interactions with SCS residues (Arg688, Arg686, Lys666, Asp721, and Gln664), are essential in determining stereoselectivity, which likely proceeds with retention of configuration. The tetratricopeptide repeat (TPR) domain of AspH influences substrate binding and manifests dynamic motions during catalysis, an observation of interest with respect to other 2OG oxygenases with TPR domains. The results provide unique insights into how non-heme Fe(ii) oxygenases can effectively catalyze stereoselective hydroxylation using only two enzyme-derived Fe-ligating residues, potentially guiding enzyme engineering for stereoselective biocatalysis, thus advancing the development of non-heme Fe(ii) based biomimetic C-H oxidation catalysts, and supporting the proposal that the 2OG oxygenase superfamily may be larger than once perceived
Mechanism of the Early Catalytic Events in the Collagenolysis by Matrix Metalloproteinase-1
Metalloproteinase-1 (MMP-1) catalyzed collagen degradation is essential for a wide variety of normal physiological processes, while at the same time contributing to several diseases in humans. Therefore, a comprehensive understanding of this process is of great importance. Although crystallographic and spectroscopic studies provided fundamental information about the structure and function of MMP-1, the precise mechanism of collagen degradation especially considering the complex and flexible structure of the substrate, remains poorly understood. In addition, how the protein environment dynamically reorganizes at the atomic scale into a catalytically active state capable of collagen hydrolysis remains unknown. In this study, we applied experimentally-guided multiscale molecular modeling methods including classical molecular dynamics (MD), well-tempered (WT) classical metadynamics (MetD), combined quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM MetD simulations to explore and characterize the early catalytic events of MMP-1 collagenolysis. Importantly the study provided a complete atomic and dynamic description of the transition from the open to the closed form of the MMP-1•THP complex. Notably, the formation of catalytically active Michaelis complex competent for collagen cleavage was characterized. The study identified the changes in the coordination state of the catalytic zinc(II) associated with the conformational transformation and the formation of catalytically productive ES complex. Our results confirm the essential role of the MMP-1 catalytic domain\u27s α-helices (hA, hB and hC) and the linker region in the transition to the catalytically competent ES complex. Overall, the results provide unique mechanistic insight into the conformational transformations and associated changes in the coordination state of the catalytic zinc(II) that would be important for the design of effective MMP-1 inhibitors
Conformational flexibility influences structure–function relationships in nucleic acid N-methyl demethylases
N-Methylation of DNA/RNA bases can be regulatory or damaging and is linked to diseases including cancer and genetic disorders. Bacterial AlkB and human FTO are DNA/RNA demethylases belonging to the Fe(II) and 2-oxoglutarate oxygenase superfamily. Modelling studies reveal conformational dynamics influence structure–function relationships of AlkB and FTO, e.g. why 1-methyladenine is a better substrate for AlkB than 6-methyladenine. Simulations show that the flexibility of the double stranded DNA substrate in AlkB influences correlated motions, including between the core jelly-roll fold and an active site loop involved in substrate binding. The FTO N- and C-terminal domains move in respect to one another in a manner likely important for substrate binding. Substitutions, including clinically observed ones, influencing catalysis contribute to the network of correlated motions in AlkB and FTO. Overall, the calculations highlight the importance of the overall protein environment and its flexibility to the geometry of the reactant complexes