35 research outputs found

    Type I IFN signature in childhood-onset systemic lupus erythematosus: A conspiracy of DNA- and RNA-sensing receptors?

    Get PDF
    Background: Childhood-onset systemic lupus erythematosus (cSLE) is an incurable multi-systemic autoimmune disease. Interferon type I (IFN-I) plays a pivotal role in the pathogenesis of SLE. The objective of this study was to assess the prevalence of the IFN-I signature and the contribution of cytosolic nucleic acid receptors to IFN-I activation in a cohort of primarily white cSLE patients. Methods: The IFN-I score (positive or negative), as a measure of IFN-I activation, was assessed using real-time quantitative PCR (RT-PCR) expression values of IFN-I signature genes (IFI44, IFI44L, IFIT1, Ly6e, MxA, IFITM1) in CD14+ monocytes of cSLE patients and healthy controls (HCs). Innate immune receptor expression was determined by RT-PCR and flow cytometry. To clarify the contribution of RNA-binding RIG-like receptors (RLRs) and DNA-binding receptors (DBRs) to IFN-I activation, peripheral blood mononuclear cells (PBMCs) from patients were treated with BX795, a TANK-binding kinase 1 (TBK1) inhibitor blocking RLR and DBR pathways. Results: The IFN-I signature was positive in 57% of cSLE patients and 15% of the HCs. Upregulated gene expression of TLR7, RLRs (IFIH1, DDX58, DDX60, DHX58) and DBRs (ZBP-1, IFI16) was observed in CD14+ monocytes of the IFN-I-positive cSLE patients. Additionally, RIG-I and ZBP-1 protein expression was upregulated in these cells. Spontaneous IFN-I stimulated gene (ISG) expression in PBMCs from cSLE patients was inhibited by a TBK1-blocker. Conclusions: IFN-I activation, assessed as ISG expression, in cSLE is associated with increased expression of TLR7, and RNA and DNA binding receptors, and these receptors contribute to IFN-I activation via TBK1 signaling. TBK1-blockers may therefore be a promising treatment target for SLE

    Infective endocarditis in the Netherlands:current epidemiological profile and mortality An analysis based on partial ESC EORP collected data

    Get PDF
    Introduction: Infective endocarditis (IE) is associated with a high in-hospital and long term mortality. Although progress has been made in diagnostic approach and management of IE, morbidity and mortality of IE remain high. In the latest European guidelines, the importance of the multi-modality imaging in diagnosis and follow up of IE is emphasized. Aim: The aim was to provide information regarding mortality and adverse events of IE, to determine IE characteristics and to assess current use of imaging in the diagnostic workup of IE. Methods: This is a prospective observational cohort study. We used data from the EURO-ENDO registry. Seven hospitals in the Netherlands have participated and included patients with IE between April 2016 and April 2018. Results: A total of 139 IE patients were included. Prosthetic valve endocarditis constituted 32.4% of the cases, cardiac device related IE 7.2% and aortic root prosthesis IE 3.6%. In-hospital mortality was 14.4% (20 patients) and one-year mortality was 21.6% (30 patients). The incidence of embolic events under treatment was 16.5%, while congestive heart failure or cardiogenic shock occurred in 15.1% of the patients. Transthoracic and transoesophageal echocardiography were performed most frequently (97.8%; 81.3%) and within 3 days after IE suspicion, followed by 18F‑fluorodeoxyglucose positron emission tomography/computed tomography (45.3%) within 6 days and multi-slice computed tomography (42.4%) within 7 days. Conclusion: We observed a high percentage of prosthetic valve endocarditis, rapid and extensive use of imaging and a relatively low in-hospital and one-year mortality of IE in the Netherlands. Limitations include possible selection bias

    Added value of 18F-FDG-PET/CT and cardiac CTA in suspected transcatheter aortic valve endocarditis

    Get PDF
    Backgrounds: Transcatheter-implanted aortic valve infective endocarditis (TAVI-IE) is difficult to diagnose when relying on the Duke Criteria. Our aim was to assess the additional diagnostic value of 18F-fluorodeoxyglucose (18F-FDG) positron emission/computed tomography (PET/CT) and cardiac computed tomography angiography (CTA) in suspected TAVI-IE. Methods: A multicenter retrospective analysis was performed in all patients who underwent 18F-FDG-PET/CT and/or CTA with suspected TAVI-IE. Patients were first classified with Duke Criteria and after adding 18F-FDG-PET/CT and CTA, they were classified with European Society of Cardiology (ESC) criteria. The final diagnosis was determined by our Endocarditis Team based on ESC guideline recommendations. Results: Thirty patients with suspected TAVI-IE were included. 18F-FDG-PET/CT was performed in all patients and Cardiac CTA in 14/30. Using the Modified Duke Criteria, patients were classified as 3% rejected (1/30), 73% possible (22/30), and 23% definite (7/30) TAVI-IE. Adding 18F-FDG-PET/CT and CTA supported the reclassification of 10 of the 22 possible cases as “definite TAVI-IE” (5/22) or “rejected TAVI-IE” (5/22). This changed the final diagnosis to 20% rejected (6/30), 40% possible (12/30), and 40% definite (12/30) TAVI-IE. Conclusions: Addition of 18F-FDG-PET/CT and/or CTA changed the final diagnosis in 33% of patients and proved to be a valuable diagnostic tool in patients with suspected TAVI-IE

    Added value of semi-quantitative analysis of [18F]FDG PET/CT for the diagnosis of device-related infections in patients with a left ventricular assist device

    Get PDF
    AIMS: Left ventricular assist devices (LVADs) improve quality of life and survival in patients with advanced heart failure, but device-related infections (DRIs) remain cumbersome. We evaluated the diagnostic capability of [18F]FDG PET/CT, factors affecting its accuracy, and the additive value of semi-quantitative analysis for the diagnosis of DRI.METHODS AND RESULTS: LVAD recipients undergoing [18F]FDG PET/CT between 2012 and 2020 for suspected DRI were retrospectively included. [18F]FDG PET/CT was performed and evaluated in accordance with EANM guidelines. The final diagnosis of DRI, based on multidisciplinary consensus and findings during surgery, whenever performed, was used as the reference for diagnosis. 41 patients were evaluated for 59 episodes of suspected DRI. The clinical evaluation established driveline infection in 32 (55%) episodes, central device infection in 6 (11%), and combined infection in 2 (4%). Visual analysis of [18F]FDG PET/CT achieved a sensitivity and specificity for driveline infections of 0.79 and 0.71, respectively, whereas semi-quantitative analysis achieved a sensitivity and specificity of 0.94 and 0.83, respectively. For central device component infection, visual analysis of [18F]FDG PET/CT achieved a sensitivity and specificity of 0.75 and 0.60, respectively. Semi-quantitative analysis using SUVratio achieved a sensitivity and specificity of 1.0 and 0.8, respectively. The increase of specificity for central component infection was statistically significant (P = 0.05).CONCLUSIONS: [18F]FDG PET/CT reliably predicts the presence of DRI in LVAD recipients. Semi-quantitative analysis may increase the specificity of [18F]FDG PET/CT for the analysis of central device component infection and should be considered in equivocal cases after visual analysis.</p

    Normal imaging findings after ascending aorta prosthesis implantation on 18F-Fluorodeoxyglucose Positron Emission Tomography with computed tomography

    Get PDF
    Background: To diagnose abnormal 18F-Fluorodeoxyglucose (18F-FDG) uptake in suspected endocarditis after aortic root and/or ascending aorta prosthesis (ARAP) implantation, it is important to first establish the normal periprosthetic uptake on positron emission tomography with computed tomography (PET/CT). Methods: Patients with uncomplicated ARAP implantation were prospectively included and underwent 18F-FDG-PET/CT at either 12 (± 2) weeks (group 1) or 52 (± 8) weeks (group 2) after procedure. Uptake on three different locations of the prosthesis (“cranial anastomosis (CA),” “prosthetic heart valve (PHV),” “ascending aorta prosthesis (AAP)”) was scored visually (none/low/intermediate/high) and quantitatively (maximum standardized uptake value (SUVmax) and target-to-background ratio (SUVratio). Results: In total, 20 patients (group 1: n = 10, group 2: n = 10) (mean age 64±7 years, 70% male) were included. Both groups had similar visual uptake intensity for all measured areas (CA: mostly low-intermediate (16/20 (80%)), p = .17; PHV: low-intermediate (16/20 (80%)), p = .88; AAP: low-intermediate (19/20 (95%)), p = .48). SUVmax for CA was 5.6 [4.1-6.1] and 3.8 [3.1-5.9] (median [IQR], p = .19), and around PHV 5.0 [4.1-5.7] and 6.3 [4.6-7.1] (p = .11) for groups 1 and 2, respectively. SUVratio for CA was 2.8 [2.3-3.2] and 2.0 [1.7-2.6] (median [IQR], p = .07) and around PHV 2.5 [2.4-2.8] and 2.9 [2.3-3.5] (median [IQR], p = .26) for groups 1 and 2, respectively. Conclusion: No significant differences were observed between PET/CT findings at 3 months and 1 year after ARAP implantation, warranting caution in interpretation of PET/CT in the first year after implantation

    Added value of 18F-FDG-PET/CT and cardiac CTA in suspected transcatheter aortic valve endocarditis

    Get PDF
    BACKGROUNDS: Transcatheter-implanted aortic valve infective endocarditis (TAVI-IE) is difficult to diagnose when relying on the Duke Criteria. Our aim was to assess the additional diagnostic value of 18F-fluorodeoxyglucose (18F-FDG) positron emission/computed tomography (PET/CT) and cardiac computed tomography angiography (CTA) in suspected TAVI-IE.METHODS: A multicenter retrospective analysis was performed in all patients who underwent 18F-FDG-PET/CT and/or CTA with suspected TAVI-IE. Patients were first classified with Duke Criteria and after adding 18F-FDG-PET/CT and CTA, they were classified with European Society of Cardiology (ESC) criteria. The final diagnosis was determined by our Endocarditis Team based on ESC guideline recommendations.RESULTS: Thirty patients with suspected TAVI-IE were included. 18F-FDG-PET/CT was performed in all patients and Cardiac CTA in 14/30. Using the Modified Duke Criteria, patients were classified as 3% rejected (1/30), 73% possible (22/30), and 23% definite (7/30) TAVI-IE. Adding 18F-FDG-PET/CT and CTA supported the reclassification of 10 of the 22 possible cases as "definite TAVI-IE" (5/22) or "rejected TAVI-IE" (5/22). This changed the final diagnosis to 20% rejected (6/30), 40% possible (12/30), and 40% definite (12/30) TAVI-IE.CONCLUSIONS: Addition of 18F-FDG-PET/CT and/or CTA changed the final diagnosis in 33% of patients and proved to be a valuable diagnostic tool in patients with suspected TAVI-IE.</p

    Role of cardiac ct in infective endocarditis: Current evidence, opportunities, and challenges

    No full text
    Infective endocarditis (IE) can present with variable clinical and imaging findings and is associated with high morbidity and mortality. Substantial improvement of CT technology, most notably improved temporal and spatial resolution, has resulted in increased use of this modality in the evaluation of IE. The aim of this article is to review the potential role of cardiac CT in evaluating IE

    LLDAS is an attainable treat-to-target goal in childhood-onset SLE

    Get PDF
    Objectives To study whether clinical remission (CR) and Low Lupus Disease Activity State (LLDAS) are achievable goals in childhood-onset SLE. Methods Data on medication use and disease activity were prospectively collected. LLDAS was defined as Safety of Estrogen in Lupus Erythematosus National Assesment-SLE disease Activity Index (SELENA-SLEDAI) ≤4 with zero scores for renal, Central Nervous System (CNS), serositis, vasculitis and constitutional components, no increase in any SLEDAI component since the previous visit, PGA ≤1, and prednisone dose ≤7.5 mg/day. CR on treatment (Tx) was defined as a Physician Global Assessment 50% of time. 52.9% children achieved CR on Tx, and only 21.6% children achieved CR off Tx. Conclusions LLDAS is an attainable treat-to-target goal in contrast to CR on and off Tx. Even more, LLDAS can be reached with limited use of corticosteroids with early introduction of immunosuppressives

    18F-FDG/PET-CT imaging findings after sternotomy

    Get PDF
    Background: The clinical diagnosis of deep sternal wound infection (DSWI) is supported by imaging findings including 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT). To avoid misinterpretation due to normal post-surgery inflammation we assessed normal imaging findings in non-infected patients after sternotomy. Methods: This is a prospective cohort study including non-infectious patients with sternotomy. All patients underwent 18F-FDG-PET/CT at either 5 weeks (group 1), 12 weeks (group 2) or 52 weeks (group 3) post-surgery. 18F-FDG uptake was scored visually in five categories and assessed quantitatively. Results: A total of 44 patients were included. Sternal mean SUVmax was 7.34 (± 1.86), 5.22 (± 2.55) and 3.20 (± 1.80) in group 1, 2 and 3, respectively (p < 0.01). Sternal mean SUVmean was 3.84 (± 1.00), 2.69 (± 1.32) and 1.71 (± 0.98) in group 1, 2 and 3 (p < 0.01). All patients in group 1 had elevated uptake whereas group 2 and 3 showed 2/15 (13%) and 11/20 (55%) patients respectively with no elevated uptake. Group 3 still showed an elevated uptake pattern in in 9/20 (45%) and in 3/9 (33%) with a high-grade diffuse uptake pattern. Conclusion: This study shows significant lower sternal 18F-FDG at 55 weeks compared to 5 weeks post-sternotomy however elevated uptake patterns may persist

    Dysregulated endothelial cell markers in systemic lupus erythematosus: a systematic review and meta-analysis

    Get PDF
    Abstract Objectives To perform a systematic literature review and meta-analysis on endothelial cell (EC) markers that are involved and dysregulated in systemic lupus erythematosus (SLE) in relation to disease activity, as EC dysregulation plays a major role in the development of premature atherosclerosis in SLE. Methods Search terms were entered into Embase, MEDLINE, Web of Science, Google Scholar and Cochrane. Inclusion criteria were 1) studies published after 2000 reporting measurements of EC markers in serum and/or plasma of SLE patients (diagnosed according to ACR/SLICC criteria), 2) English language peer reviewed articles, and 3) disease activity measurement. For meta-analysis calculations, the Meta-Essentials tool by Erasmus Research Institute and of Management (ERIM) was used. Only those EC markers, which were 1) reported in at least two articles and 2) reported a correlation coefficient (i.e. Spearman’s rank or Pearson’s) between the measured levels of the EC marker and disease activity were included. For meta-analyses, a fixed effect model was used. Results From 2133 hits, 123 eligible articles were selected. The identified SLE-related endothelial markers were involved in EC activation, EC apoptosis, disturbed angiogenesis, defective vascular tone control, immune dysregulation and coagulopathy. Meta-analyses of primarily cross-sectional studies showed significant associations between marker levels and disease activity for the following endothelial markers: Pentraxin-3, Thrombomodulin, VEGF, VCAM-1, ICAM-1, IP-10 and MCP-1. Dysregulated EC markers without associations with disease activity were: Angiopoeitin-2, vWF, P-Selectin, TWEAK and E-Selectin. Conclusions We provide a complete literature overview for dysregulated EC markers in SLE comprising a wide range of different EC functions. SLE-induced EC marker dysregulation was seen with, but also without, association with disease activity. This study provides some clarity in the eminent complex field of EC markers as biomarkers for SLE. Longitudinal data on EC markers in SLE are now needed to guide us more in unravelling the pathophysiology of premature atherosclerosis and cardiovascular events in SLE patients
    corecore