2 research outputs found

    Selection, drift and community interactions shape microbial biogeographic patterns in the Pacific Ocean

    Get PDF
    Despite accumulating data on microbial biogeographic patterns in terrestrial and aquatic environments, we still lack a comprehensive understanding of how these patterns establish, in particular in ocean basins. Here we show the relative significance of the ecological mechanisms selection, dispersal and drift for shaping the composition of microbial communities in the Pacific Ocean over a transect of 12,400 km between subantarctic and subarctic regions. In the epipelagic, homogeneous selection contributes 50–60% and drift least to the three mechanism for the assembly of prokaryotic communities whereas in the upper mesopelagic, drift is relatively most important for the particle-associated subcommunities. Temperature is important for the relative significance of homogeneous selection and dispersal limitation for community assembly. The relative significance of both mechanisms was inverted with increasing temperature difference along the transect. For eukaryotes >8 µm, homogeneous selection is also the most important mechanisms at two epipelagic depths whereas at all other depths drift is predominant. As species interactions are essential for structuring microbial communities we further analyzed co-occurrence-based community metrics to assess biogeographic patterns over the transect. These interaction-adjusted indices explained much better variations in microbial community composition as a function of abiotic and biotic variables than compositional or phylogenetic distance measures like Bray–Curtis or UniFrac. Our analyses are important to better understand assembly processes of microbial communities in the upper layers of the largest ocean and how they adapt to effectively perform in global biogeochemical processes. Similar principles presumably act upon microbial community assembly in other ocean basins

    Genetic tools for the investigation of Roseobacter clade bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Roseobacter </it>clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools.</p> <p>Results</p> <p>Conjugation and electroporation methods for the efficient and stable genetic transformation of selected <it>Roseobacter </it>clade bacteria including <it>Dinoroseobacter shibae</it>, <it>Oceanibulbus indolifex</it>, <it>Phaeobacter gallaeciensis</it>, <it>Phaeobacter inhibens</it>, <it>Roseobacter denitrificans </it>and <it>Roseobacter litoralis </it>were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene <it>dnr </it>from <it>D. shibae </it>DFL12<sup>T</sup>.</p> <p>Conclusion</p> <p>A genetic toolbox for members of the <it>Roseobacter </it>clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria.</p
    corecore