2 research outputs found

    Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory

    Full text link
    A microscopic criterion for distinguishing synchronized flow and wide moving jam phases in single vehicle data measured at a single freeway location is presented. Empirical local congested traffic states in single vehicle data measured on different days are classified into synchronized flow states and states consisting of synchronized flow and wide moving jam(s). Then empirical microscopic characteristics for these different local congested traffic states are studied. Using these characteristics and empirical spatiotemporal macroscopic traffic phenomena, an empirical test of a microscopic three-phase traffic flow theory is performed. Simulations show that the microscopic criterion and macroscopic spatiotemporal objective criteria lead to the same identification of the synchronized flow and wide moving jam phases in congested traffic. It is found that microscopic three-phase traffic models can explain both microscopic and macroscopic empirical congested pattern features. It is obtained that microscopic distributions for vehicle speed difference as well as fundamental diagrams and speed correlation functions can depend on the spatial co-ordinate considerably. It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic states are qualitatively different. The reason for this is that important spatiotemporal features of congested traffic patterns are it lost in these as well as in many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models, specifically, cellular automata traffic flow models.Comment: 27 pages, 16 figure

    Traffic and Related Self-Driven Many-Particle Systems

    Full text link
    Since the subject of traffic dynamics has captured the interest of physicists, many astonishing effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by so-called ``phantom traffic jams'', although they all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction of the traffic volume cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize in lanes, while similar systems are ``freezing by heating''? Why do self-organizing systems tend to reach an optimal state? Why do panicking pedestrians produce dangerous deadlocks? All these questions have been answered by applying and extending methods from statistical physics and non-linear dynamics to self-driven many-particle systems. This review article on traffic introduces (i) empirically data, facts, and observations, (ii) the main approaches to pedestrian, highway, and city traffic, (iii) microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts like a general modelling framework for self-driven many-particle systems, including spin systems. Subjects such as the optimization of traffic flows and relations to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are discussed as well.Comment: A shortened version of this article will appear in Reviews of Modern Physics, an extended one as a book. The 63 figures were omitted because of storage capacity. For related work see http://www.helbing.org
    corecore