84,869 research outputs found
A New Stable Peer-to-Peer Protocol with Non-persistent Peers
Recent studies have suggested that the stability of peer-to-peer networks may
rely on persistent peers, who dwell on the network after they obtain the entire
file. In the absence of such peers, one piece becomes extremely rare in the
network, which leads to instability. Technological developments, however, are
poised to reduce the incidence of persistent peers, giving rise to a need for a
protocol that guarantees stability with non-persistent peers. We propose a
novel peer-to-peer protocol, the group suppression protocol, to ensure the
stability of peer-to-peer networks under the scenario that all the peers adopt
non-persistent behavior. Using a suitable Lyapunov potential function, the
group suppression protocol is proven to be stable when the file is broken into
two pieces, and detailed experiments demonstrate the stability of the protocol
for arbitrary number of pieces. We define and simulate a decentralized version
of this protocol for practical applications. Straightforward incorporation of
the group suppression protocol into BitTorrent while retaining most of
BitTorrent's core mechanisms is also presented. Subsequent simulations show
that under certain assumptions, BitTorrent with the official protocol cannot
escape from the missing piece syndrome, but BitTorrent with group suppression
does.Comment: There are only a couple of minor changes in this version. Simulation
tool is specified this time. Some repetitive figures are remove
Erasure Multiple Descriptions
We consider a binary erasure version of the n-channel multiple descriptions
problem with symmetric descriptions, i.e., the rates of the n descriptions are
the same and the distortion constraint depends only on the number of messages
received. We consider the case where there is no excess rate for every k out of
n descriptions. Our goal is to characterize the achievable distortions D_1,
D_2,...,D_n. We measure the fidelity of reconstruction using two distortion
criteria: an average-case distortion criterion, under which distortion is
measured by taking the average of the per-letter distortion over all source
sequences, and a worst-case distortion criterion, under which distortion is
measured by taking the maximum of the per-letter distortion over all source
sequences. We present achievability schemes, based on random binning for
average-case distortion and systematic MDS (maximum distance separable) codes
for worst-case distortion, and prove optimality results for the corresponding
achievable distortion regions. We then use the binary erasure multiple
descriptions setup to propose a layered coding framework for multiple
descriptions, which we then apply to vector Gaussian multiple descriptions and
prove its optimality for symmetric scalar Gaussian multiple descriptions with
two levels of receivers and no excess rate for the central receiver. We also
prove a new outer bound for the general multi-terminal source coding problem
and use it to prove an optimality result for the robust binary erasure CEO
problem. For the latter, we provide a tight lower bound on the distortion for
\ell messages for any coding scheme that achieves the minimum achievable
distortion for k messages where k is less than or equal to \ell.Comment: 48 pages, 2 figures, submitted to IEEE Trans. Inf. Theor
Refinement of the random coding bound
An improved pre-factor for the random coding bound is proved. Specifically,
for channels with critical rate not equal to capacity, if a regularity
condition is satisfied (resp. not satisfied), then for any a
pre-factor of (resp. ) is achievable for rates above the
critical rate, where and is the blocklength and rate, respectively. The
extra term is related to the slope of the random coding
exponent. Further, the relation of these bounds with the authors' recent
refinement of the sphere-packing bound, as well as the pre-factor for the
random coding bound below the critical rate, is discussed.Comment: Submitted to IEEE Trans. Inform. Theor
Thermodynamic consistency of liquid-gas lattice Boltzmann simulations
Lattice Boltzmann simulations have been very successful in simulating
liquid-gas and other multi-phase fluid systems. However, the underlying second
order analysis of the equation of motion has long been known to be insufficient
to consistently derive the fourth order terms that are necessary to represent
an extended interface. These same terms are also responsible for thermodynamic
consistency, i.e. to obtain a true equilibrium solution with both a constant
chemical potential and a constant pressure. In this article we present an
equilibrium analysis of non-ideal lattice Boltzmann methods of sufficient order
to identify those higher order terms that lead to a lack of thermodynamic
consistency. We then introduce a thermodynamically consistent forcing method.Comment: 12 pages, 8 figure
Realtime 3D graphics programming using the Quake3 engine
We present a lab assignment that accompanies a complete module called Real-time Graphics . The students task is to get familiar with content creation and programming a (previously) commercial 3D engine. In a first task, students have to create 3D content, which is integrated into the Quake3 engine. In a second task, the students have to implement a simple animation and finally add an impressive 3D graphics effect to the Quake3 engine. The lecture has been taught four times from 2004 to 2007. We present the assignment and report on experiences that we have gained
Hard exclusive neutrino production of a light meson
We update the leading order in QCD amplitude for deep exclusive
neutrino and antineutrino production of a light meson on an unpolarized
nucleon. The factorization theorems of the collinear QCD approach allow us to
write the amplitude as the convolution of generalized parton distributions
(GPDs) and perturbatively calculable coefficient functions. We study both the
pseudoscalar meson and longitudinally polarized vector meson cases. It turns
out that, contrarily to the electroproduction case, the leading twist
scattering amplitudes for and productions are proportional to
one another, which may serve as an interesting new test of the leading twist
dominance of exclusive processes at medium scale. The dominance of the gluonic
contribution to most cross sections is stressed.Comment: 9 pages, 8 figures. second version (to be published in Phys Rev D):
misprint in name of second author corrected; one added reference; minor
misprints corrected. arXiv admin note: text overlap with arXiv:1702.0031
- …
