150 research outputs found

    Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells

    Get PDF
    AbstractParity-induced mammary epithelial cells (PI-MECs) are defined as a pregnancy hormone-responsive cell population that activates the promoter of late milk protein genes during the second half of pregnancy and lactation. However, unlike their terminally differentiated counterparts, these cells do not undergo programmed cell death during post-lactational remodeling of the gland. We previously demonstrated that upon transplantation into an epithelial-free mammary fat pad, PI-MECs exhibited two important features of multipotent mammary epithelial progenitors: a) self-renewal, and b) contribution to ductal and alveolar morphogenesis. In this new report, we introduce a new method to viably label PI-MECs. Using this methodology, we analyzed the requirement of ovarian hormones for the maintenance of this epithelial subtype in the involuted mammary gland. Furthermore, we examined the expression of putative stem cell markers and found that a portion of GFP-labeled PI-MECs were part of the CD24+/CD49fhigh mammary epithelial subtype, which has recently been suggested to contain multipotent stem cells. Subsequently, we demonstrated that isolated PI-MECs were able to form mammospheres in culture, and upon transplantation, these purified epithelial cells were capable of establishing a fully functional mammary gland. These observations suggest that PI-MECs contain multipotent progenitors that are able to self renew and generate diverse epithelial lineages present in the murine mammary gland

    Conditional deletion of the bcl-x gene from mouse mammary epithelium results in accelerated apoptosis during involution but does not compromise cell function during lactation

    Get PDF
    In the mammary gland Bcl-x is the most abundant cell survival factor from the Bcl-2 family. Since Bcl-x null mice die around day 12 of embryogenesis, the relevance of this protein in organ development and function is poorly understood. In erythroid cells bcl-x gene expression is controlled by cytokines and the transcription factor Stat5 (signal transducer and activator of transcription). However, we identified that bcl-x RNA levels in mammary tissue from prolactin receptor- and Stat5-null mice were indistinguishable from wild type mice. We have proposed that Bcl-x might control the survival of mammary epithelial cells throughout pregnancy, lactation, and the early stages of involution, and we have now tested this hypothesis through the conditional deletion of the bcl-x gene from mouse mammary epithelium. Conditional (floxed) bcl-x alleles were excised from alveolar cells during pregnancy using a Cre transgene under the control of the whey acidic protein gene promoter. Deletion of the bcl-x gene from the entire epithelial compartment (ducts and alveoli) was achieved by expressing Cre-recombinase under control of the mouse mammary tumor virus long terminal repeat. The absence of Bcl-x did not compromise proliferation and differentiation of mammary ductal and alveolar epithelial cells in virgin mice and during pregnancy and lactation. However, epithelial cell death and tissue remodeling were accelerated in the bcl-x conditional knockout mice during the first stage of involution. Concomitant deletion of the bax gene did not significantly modify the Bcl-x phenotype. Our results suggest that Bcl-x is not essential during mammopoiesis, but is critical for controlled apoptosis during the first phase of involution. Published by Elsevier Science Ireland Ltd

    PPARγ Loss Leads to Reduced Fertility

    Get PDF
    The peroxisome proliferation-activated receptor gamma (PPARγ) is expressed in many cell types including mammary epithelium, ovary, macrophages, and B- and T-cells. PPARγ has an anti-proliferative effect in pre-adipocytes and mammary epithelial cells, and treatment with its ligands reduced the progression of carcinogen-induced mammary tumors in mice. Because PPARγ-null mice die in utero it has not been possible to study its role in development and tumorigenesis in vivo. To investigate whether PPARγ is required for the establishment and physiology of different cell types, a cell-specific deletion of the gene was carried out in mice using the Cre-loxP recombination system. We deleted the PPARγ gene in mammary epithelium using WAP-Cre transgenic mice and in epithelial cells, B- and T-cells, and ovary cells using MMTV-Cre mice. The presence of PPARγ was not required for functional development of the mammary gland during pregnancy and for the establishment of B- and T-cells. In addition, no increase in mammary tumors was observed. However, loss of the PPARγ gene in oocytes and granulosa cells resulted in impaired fertility. These mice have normal populations of follicles, they ovulate and develop corpora lutea. Although progesterone levels are decreased and implantation rates are reduced, the exact cause of the impaired fertility remains to be determined

    Stat5 determines the development of mammary alveolar cells

    Get PDF
    Functional development of mammary epithelium during pregnancy depends on prolactin signaling. However, the underlying molecular and cellular events are not fully understood. We examined the specific contributions of the prolactin receptor (PrlR) and the signal transducers and activators of transcription 5a and 5b (referred to as Stat5) in the formation and differentiation of mammary alveolar epithelium. PrlR- and Stat5-null mammary epithelia were transplanted into wild-type hosts, and pregnancy-mediated development was investigated at a histological and molecular level. Stat5-null mammary epithelium developed ducts but failed to form alveoli, and no milk protein gene expression was observed. In contrast, PrlR-null epithelium formed alveoli-like structures with small open lumina. Electron microscopy revealed undifferentiated features of organelles and a perturbation of cell–cell contacts in PrlR- and Stat5-null epithelia. Expression of NKCC1, an Na-K-Cl cotransporter characteristic for ductal epithelia, and ZO-1, a protein associated with tight junction, were maintained in the alveoli-like structures of PrlR- and Stat5-null epithelia. In contrast, the Na-Pi cotransporter Npt2b, and the gap junction component connexin 32, usually expressed in secretory epithelia, were undetectable in PrlR- and Stat5- null mice. These data demonstrate that signaling via the PrlR and Stat5 is critical for the proliferation and differentiation of mammary alveoli during pregnancy

    Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium

    Get PDF
    Functional development of mammary epithelium during pregnancy depends on prolactin signaling. However, the underlying molecular and cellular events are not fully understood. We examined the specific contributions of the prolactin receptor (PrlR) and the signal transducers and activators of transcription 5a and 5b (referred to as Stat5) in the formation and differentiation of mammary alveolar epithelium. PrlR- and Stat5-null mammary epithelia were transplanted into wild-type hosts, and pregnancy-mediated development was investigated at a histological and molecular level. Stat5-null mammary epithelium developed ducts but failed to form alveoli, and no milk protein gene expression was observed. In contrast, PrlR-null epithelium formed alveoli-like structures with small open lumina. Electron microscopy revealed undifferentiated features of organelles and a perturbation of cell–cell contacts in PrlR- and Stat5-null epithelia. Expression of NKCC1, an Na-K-Cl cotransporter characteristic for ductal epithelia, and ZO-1, a protein associated with tight junction, were maintained in the alveoli-like structures of PrlR- and Stat5-null epithelia. In contrast, the Na-Pi cotransporter Npt2b, and the gap junction component connexin 32, usually expressed in secretory epithelia, were undetectable in PrlR- and Stat5-null mice. These data demonstrate that signaling via the PrlR and Stat5 is critical for the proliferation and differentiation of mammary alveoli during pregnancy

    Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy.

    Get PDF
    BACKGROUND: Pancreatic cancer (PC) is a lethal malignancy primarily driven by activated Kras mutations and characterized by the deregulation of several genes including mucins. Previous studies on mucins have identified their significant role in both benign and malignant human diseases including PC progression and metastasis. However, the initiation of MUC expression during PC remains unknown because of lack of early stage tumor tissues from PC patients. METHODS: In the present study, we have evaluated stage specific expression patterns of mucins during mouse PC progression in (Kras(G12D);Pdx1-Cre (KC)) murine PC model from pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma (PDAC) by immunohistochemistry and quantitative real-time PCR. RESULTS: In agreement with previous studies on human PC, we observed a progressive increase in the expression of mucins particularly Muc1, Muc4 and Muc5AC in the pancreas of KC (as early as PanIN I) mice with advancement of PanIN lesions and PDAC both at mRNA and protein levels. Additionally, mucin expression correlated with the increased expression of inflammatory cytokines IFN-γ (p \u3c 0.0062), CXCL1 (p \u3c 0.00014) and CXCL2 (p \u3c 0.08) in the pancreas of KC mice, which are known to induce mucin expression. Further, we also observed progressive increase in inflammation in pancreas of KC mice from 10 to 50 weeks of age as indicated by the increase in the macrophage infiltration. Overall, this study corroborates with previous human studies that indicated the aberrant overexpression of MUC1, MUC4 and MUC5AC mucins during the progression of PC. CONCLUSIONS: Our study reinforces the potential utility of the KC murine model for determining the functional role of mucins in PC pathogenesis by crossing KC mice with corresponding mucin knockout mice and evaluating mucin based diagnostic and therapeutic approaches for lethal PC

    Identification of actionable targets for breast cancer intervention using a diversity outbred mouse model

    Get PDF
    HER2-targeted therapy has improved breast cancer survival, but treatment resistance and disease prevention remain major challenges. Genes that enable HER2/Neu oncogenesis are the next intervention targets. A bioinformatics discovery platform of HER2/Neu-expressing Diversity Outbred (DO) F1 Mice was established to identify cancer-enabling genes. Quantitative Trait Loci (QTL) associated with onset ages and growth rates of spontaneous mammary tumors were sought. Twenty-six genes in 3 QTL contain sequence variations unique to the genetic backgrounds that are linked to aggressive tumors and 21 genes are associated with human breast cancer survival. Concurrent identification of TSC22D3, a transcription factor, and its target gene LILRB4, a myeloid cell checkpoint receptor, suggests an immune axis for regulation, or intervention, of disease. We also investigated TIEG1 gene that impedes tumor immunity but suppresses tumor growth. Although not an actionable target, TIEG1 study revealed genetic regulation of tumor progression, forming the basis of the genetics-based discovery platform

    A Knockout of the Tsg101 Gene Leads to Decreased Expression of ErbB Receptor Tyrosine Kinases and Induction of Autophagy Prior to Cell Death

    Get PDF
    The Tumor Susceptibility Gene 101 (Tsg101) encodes a multi-domain protein that mediates a variety of molecular and biological processes including the trafficking and lysosomal degradation of cell surface receptors. Conventional and conditional knockout models have demonstrated an essential requirement of this gene for cell cycle progression and cell viability, but the consequences of a complete ablation of Tsg101 on intracellular processes have not been examined to date. In this study, we employed mouse embryonic fibroblasts that carry two Tsg101 conditional knockout alleles to investigate the expression of ErbB receptor tyrosine kinases as well as stress-induced intracellular processes that are known to be associated with a defect in growth and cell survival. The conditional deletion of the Tsg101 gene in this well-controlled experimental model resulted in a significant reduction in the steady-state levels of the EGFR and ErbB2 but a stress-induced elevation in the phosphorylation of mitogen activated protein (MAP) kinases independent of growth factor stimulation. As part of an integrated stress response, Tsg101-deficient cells exhibited extensive remodeling of actin filaments and greatly enlarged lysosomes that were enriched with the autophagy-related protein LC3. The increase in the transcriptional activation and expression of LC3 and its association with Lamp1-positive lysosomes in a PI3K-dependent manner suggest that Tsg101 knockout cells utilize autophagy as a survival mechanism prior to their ultimate death. Collectively, this study shows that a knockout of the Tsg101 gene causes complex intracellular changes associated with stress response and cell death. These multifaceted alterations need to be recognized as they have an impact on defining particular functions for Tsg101 in processes such as signal transduction and lysosomal/endosomal trafficking

    Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis

    Get PDF
    DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b–/– lymphomas, but not in Dnmt3b–/– pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b–/– lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies
    corecore