5 research outputs found
Spinal motor neurite outgrowth over glial scar inhibitors is enhanced by coculture with bone marrow stromal cells
Background context Transplantation of bone marrow cells into spinal cord lesions promotes functional recovery in animal models, and recent clinical trials suggest possible recovery also in humans. The mechanisms responsible for these improvements are still unclear. Purpose To characterize spinal cord motor neurite interactions with human bone marrow stromal cells (MSCs) in an in vitro model of spinal cord injury (SCI). Study design/setting Previously, we have reported that human MSCs promote the growth of extending sensory neurites from dorsal root ganglia (DRG), in the presence of some of the molecules present in the glial scar, which are attributed with inhibiting axonal regeneration after SCI. We have adapted and optimized this system replacing the DRG with a spinal cord culture to produce a central nervous system (CNS) model, which is more relevant to the SCI situation. Methods We have developed and characterized a novel spinal cord culture system. Human MSCs were cocultured with spinal motor neurites in substrate choice assays containing glial scar-associated inhibitors of nerve growth. In separate experiments, MSC-conditioned media were analyzed and added to spinal motor neurites in substrate choice assays. Results As has been reported previously with DRG, substrate-bound neurocan and Nogo-A repelled spinal neuronal adhesion and neurite outgrowth, but these inhibitory effects were abrogated in MSC/spinal cord cocultures. However, unlike DRG, spinal neuronal bodies and neurites showed no inhibition to substrates of myelin-associated glycoprotein. In addition, the MSC secretome contained numerous neurotrophic factors that stimulated spinal neurite outgrowth, but these were not sufficient stimuli to promote spinal neurite extension over inhibitory concentrations of neurocan or Nogo-A. Conclusions These findings provide novel insight into how MSC transplantation may promote regeneration and functional recovery in animal models of SCI and in the clinic, especially in the chronic situation in which glial scars (and associated neural inhibitors) are well established. In addition, we have confirmed that this CNS model predominantly comprises motor neurons via immunocytochemical characterization. We hope that this model may be used in future research to test various other potential interventions for spinal injury or disease states
Evaluating patient perspectives on participating in scientific research and clinical trials for the treatment of spinal cord injury
Abstract A questionnaire was developed to evaluate patientsâ perspective on research aimed at improving functions and overcoming complications associated with spinal cord injury (SCI). The first three sections were based on published and validated assessment tools. The final section was developed to assess participant perspectives on research for SCI. One thousand patients were approached, of which 159 participated. Fifty-eight percent of participants were satisfied with their âlife as a wholeâ. Two factors could be generated that reflected the variance in the data regarding participantsâ life with a SCI: âPsychosocial and physical wellbeingâ and âIndependent livingâ. The majority of participants stated they would be involved in research (86%) or clinical trials (77%). However, the likelihood of participation dropped when potential risks of the research/trials were explained. Which participants would be willing to participate in research could not be predicted based on the severity of their injury, their psychosocial and physical wellbeing or their independent living. Despite participant establishment of a life with SCI, our data indicates that individuals strive for improvements in function. Participant willingness to be included in research studies is noteworthy and scientists and clinicians are encouraged to involve more patients in all aspects of their research