8 research outputs found

    Failure of Debye-Hückel Screening in Low-Charge Colloidal Suspensions

    Get PDF
    Derjaguin–Landau–Verwey–Overbeek (DLVO) theory remains the cornerstone of colloid stability. Electrostatic interactions dominate van der Waals attractions at large colloid-colloid separations h, unless strongly screened. Under these conditions, the potential U ( h ) between charged colloids is expected to be exponentially screened, U ( h ) ∼ exp ( − κ h ) / h , with κ − 1 = λ D where λ D is the classical Debye-Hückel screening length. By measuring the force between individual charged particles at dilute electrolyte concentrations (<mM) using optical tweezers, we tested experimentally the prediction κ − 1 = λ D in a nonpolar solvent. At low salt concentrations, we found close agreement between the directly-measured decay length κ − 1 and Debye-Hückel predictions. However, above a critical electrolyte concentration (≈450 μ M), we obtained significant discrepancies between measured and predicted screening lengths, with κ − 1 ≫ λ D . In marked contrast to expectations, we found that the measured screening length κ − 1 appears to grow as the ionic strength of the solution is increased. The origin of this discrepancy is discussed and the importance of considering the surface is highlighted

    Interaction between Nearly Hard Colloidal Spheres at an Oil-Water Interface

    Get PDF
    We show that the interaction potential between sterically stabilized, nearly hard-sphere [poly(methylmethacrylate)-poly(lauryl methacrylate) (PMMA-PLMA)] colloids at a water-oil interface has a negligible unscreened-dipole contribution, suggesting that models previously developed for charged particles at liquid interfaces are not necessarily applicable to sterically stabilized particles. Interparticle potentials, U(r)U(r), are extracted from radial distribution functions [g(r)g(r), measured by fluorescence microscopy] via Ornstein-Zernike inversion and via a reverse Monte Carlo scheme. The results are then validated by particle tracking in a blinking optical trap. Using a Bayesian model comparison, we find that our PMMA-PLMA data is better described by a screened monopole only rather than a functional form having a screened monopole plus an unscreened dipole term. We postulate that the long range repulsion we observe arises mainly through interactions between neutral holes on a charged interface, i.e., the charge of the liquid interface cannot, in general, be ignored. In agreement with this interpretation, we find that the interaction can be tuned by varying salt concentration in the aqueous phase. Inspired by recent theoretical work on point charges at dielectric interfaces, which we explain is relevant here, we show that a screened 1r2\frac{1}{r^2} term can also be used to fit our data. Finally, we present measurements for poly(methyl methacrylate)-poly(12-hydroxystearic acid) (PMMA-PHSA) particles at a water-oil interface. These suggest that, for PMMA-PHSA particles, there is an additional contribution to the interaction potential. This is in line with our optical-tweezer measurements for PMMA-PHSA colloids in bulk oil, which indicate that they are slightly charged.Comment: 8 pages, 8 figure

    The role of initiator on the dispersibility of poly(styrene) microgels in non-aqueous solvents

    Get PDF
    Non-aqueous microgel particles are commonly synthesised in water, dried, and then redispersed in non-aqueous solvents. An important factor to consider when synthesising such particles is the initiator, which can determine how well the particles disperse in solvents. Polystyrene microgel particles were made with three different initiators. When a neutral, oil soluble initiator (azobisisobutyronitrile) was used the particles dispersed in toluene as well as cyclohexane and decalin. In contrast, anionic, water-soluble initiators (potassium persulfate or azobis(4-cyanovaleric acid)) created particles that only redispersed in toluene and not the other two solvents. Of the three considered, toluene is the best solvent for polystyrene and also has the highest polarizability, making it most effective at redispersing particles with polar or ionisable functional groups. Zeta potential and conductivity measurements, however, did not detect a direct relationship between particle charging and redispersibility. Oil soluble initiators result in “inside out” polymerisation where the initiator groups are buried inside the growing particle, whereas water-soluble initiators result in “outside in” polymerisation, with the polar initiator groups residing on the particle surface. By tailoring the ratio between water and oil soluble initiators, it may be possible to synthesise microgel particles with uniform or designed charge profiles from the core to the surface. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00396-017-4023-y) contains supplementary material, which is available to authorized users

    Failure of Debye-Hückel Screening in Low-Charge Colloidal Suspensions

    No full text
    Derjaguin–Landau–Verwey–Overbeek (DLVO) theory remains the cornerstone of colloid stability. Electrostatic interactions dominate van der Waals attractions at large colloid-colloid separations h, unless strongly screened. Under these conditions, the potential U ( h ) between charged colloids is expected to be exponentially screened, U ( h ) ∼ exp ( − κ h ) / h , with κ − 1 = λ D where λ D is the classical Debye-Hückel screening length. By measuring the force between individual charged particles at dilute electrolyte concentrations (<mM) using optical tweezers, we tested experimentally the prediction κ − 1 = λ D in a nonpolar solvent. At low salt concentrations, we found close agreement between the directly-measured decay length κ − 1 and Debye-Hückel predictions. However, above a critical electrolyte concentration (≈450 μ M), we obtained significant discrepancies between measured and predicted screening lengths, with κ − 1 ≫ λ D . In marked contrast to expectations, we found that the measured screening length κ − 1 appears to grow as the ionic strength of the solution is increased. The origin of this discrepancy is discussed and the importance of considering the surface is highlighted

    Interaction between Nearly Hard Colloidal Spheres at an Oil-Water Interface v2

    No full text
    We show that the interaction potential between sterically stabilised, nearly hard-sphere (PMMA-PLMA) colloids at a water-oil interface has a negligible unscreened-dipole contribution, suggesting that models previously developed for charged particles at liquid interfaces are not necessarily applicable to sterically stabilised particles. Interparticle potentials, U(r), are extracted from radial distribution functions (g(r), measured by fluorescence microscopy) via Ornstein-Zernike (OZ) inversion and via a reverse Monte Carlo scheme. The results are then validated by particle tracking in a blinking optical trap. Using a Bayesian model comparison, we find that our PMMA-PLMA data is better described by screened monopole only rather than a functional form having a screened monopole plus an unscreened dipole term. We postulate that the long range repulsion we observe arises mainly through interactions between neutral holes on a charged interface i.e. the charge of the liquid interface cannot, in general, be ignored. In agreement with this interpretation, we find that the interaction can be tuned by varying salt concentration in the aqueous phase. Inspired by recent theoretical work on point charges at dielectric interfaces, which we explain is relevant here, we show that a screened 1/r^2 term can also be used to fit our data. Finally, we present measurements for PMMA-PHSA particles at a water-oil interface. These suggest that, for PMMA-PHSA particles, there is an additional contribution to the interaction potential. This is in line with our optical-tweezer measurements for PMMA-PHSA colloids in bulk oil, which indicate that they are slightly charged.Muntz, Iain; Thijssen, Job; Waggett, Franceska; Hunter, Michael; Schofield, Andrew; Bartlett, Paul; Marenduzzo, Davide. (2020). Interaction between Nearly Hard Colloidal Spheres at an Oil-Water Interface, [dataset]. University of Edinburgh. https://doi.org/10.7488/ds/2827
    corecore