182 research outputs found

    Kemijski sastav endemske biljke Centaurea austro-anatolica i ispitivanje antimikrobnog djelovanja protiv multi-rezistentnih bakterija

    Get PDF
    Hexane, chloroform, ethyl acetate and ethanolic extracts of the aerial parts of C. austro-anatolica Hub.-Mor. (Asteraceae) were evaluated against microorganisms, including multi-resistant bacteria, using a paper disc diffusion method. The chloroform extract exhibited significant antibacterial activity toward all bacteria tested. The chemical composition of the chloroform extract was determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The major compounds of the extract were caryophyllene oxide (21.32 %), spathulenol (10.86 %), n-tricosanol (9.58 %) and geranyl isovalerate (8.71 %).Heksanski, kloroformski, etil-acetatni i etanolni ekstrakti vršnih dijelova biljke C. austro-anatolica Hub.-Mor. (Asteraceae) ispitivani su na antimikrobno djelovanje protiv multi-rezistentnih bakterija, koristeći difuzijsku metodu na papirnom disku. Kloroformski ekstrakt pokazao je značajno antibakterijsko djelovanje protiv svih testiranih bakterija. Kemijski sastav tog ekstrakta određivan je plinskom kromatografijom (GC) i plinskom kromatografijom-spektrometrijom masa (GC-MS). Najvažniji sastojci ekstrakta bili su kariofilen oksid (21,32 %), spatulenol (10,86 %), n-trikozanol (9,58 %) i geranil izovalerat (8,71 %)

    Chloroplast DNA from lettuce and Barnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion

    Full text link
    We have cloned into plasmids 17 of 18 lettuce chloroplast DNA SacI fragments covering 96% of the genome. The cloned fragments were used to construct cleavage maps for 10 restriction enzymes for the chloroplast genomes of lettuce ( Lactuca sativa ) and Barnadesia caryophylla , two distantly related species in the sunflower family (Asteraceae). Both genomes are approximately 151 kb in size and contain a 25 kb inverted repeat. We also mapped the position and orientation of 37 chloroplast DNA genes. The mapping studies reveal that chloroplast DNAs of lettuce and Barnadesia differ by a 22 kb inversion in the large single copy region. Barnadesia has retained the primitive land plant genome arrangement, while the inversion has occurred in a lettuce lineage. The endpoints of the derived lettuce inversion were located by comparison to the well-characterized spinach and tobacco genomes. Both endpoints are located in intergenic spacers within tRNA gene clusters; one cluster being located downstream from the atpA gene and the other upstream from the psbD gene. The endpoint near the atpA gene is very close to one endpoint of a 20 kb inversion in wheat (Howe et al. 1983; Quigley and Weil 1985). Comparison of the restriction site maps gives an estimated sequence divergence of 3.7% for the lettuce and Barnadesia genomes. This value is relatively low compared to previous estimates for other angiosperm groups, suggesting a high degree of sequence conservation in the Asteraceae.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46961/1/294_2004_Article_BF00384619.pd

    Development of carpels and ovules in Dialypetalanthus fuscescens Kuhlm. (Rubiaceae): an enigmatic taxon

    Get PDF
    ABSTRACT Dialypetalanthus is a monospecific genus that occurs in the Amazon Basin of Brazil, Bolivia and Peru and occupies a controversial position among the Rubiaceae. We continue this taxonomic discussion with the overall aim of clarifying the systematic position of D. fuscescens within the Rubiaceae. To accomplish this, we analyzed the ontogeny of its gynoecium, in particular the floral meristem, as well as the development of the carpels and cauline placentation. Gynosporogenesis and the differentiation of the carpellary septa and ovules were also described. Dialypetalanthus fuscescens was classified according to evolutionary diagrams found in the literature. The following characteristics were observed in D. fuscescens: 1) permanence of the floral meristem in the central basal part of the early flower bud; 2) dual origin of carpellary septum; 3) trizonate ovular primordia with only one fertile gynospore per ovule; and 4) cellular proliferation in the chalazal region. Embryological results confirm the classification of D. fuscescens in the subfamily Ixoroideae. These results are distinct from any others previously proposed in the evolutionary diagram. Therefore, we conclude that this study has presented evidence strongly suggesting that Dialypetalanthus possesses new morphological-type of ovule we refer to as the Dialypetalanthus-type
    corecore