1,901 research outputs found

    Managing the environment and the economy in the presence of hysteresis and irreversibility

    Get PDF
    The shallow lake optimal management problem is one of the simplest ecological-economic interest conflict models for which several qualitatively different long run outcomes are possible. We extend the original model by adding the capital stock of an industry as a second state variable. A government can mitigate the effects of pollution arising from industrial activities by imposing the requirement to abate emissions. Within this framework two scenarios are examined. In the social optimal benchmark, the social planner optimally allocates investment. In the competitive equilibrium, market forces determine the investment in capital, but the social planner can still abate emissions. We show that in the case of irreversibilities catastrophes are avoided in the competitive equilibrium when it is socially optimal to do so. However, in the competitive equilibrium, either the catastrophe is avoided in an inefficient way or the catastrophe is badly managed. In case of hysteresis, catastrophes are almost always avoided. Moreover, the decision to avoid catastrophes does not depend on long-term considerations.

    Real-time realistic radar simulation

    Get PDF

    How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?

    Get PDF
    International audienceThis study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools' relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (?-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study uses three test cases to compare the algorithms' performances: (1) a standardized test function suite from the computer science literature, (2) a benchmark hydrologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a computationally intensive integrated surface-subsurface model application in the Shale Hills watershed in Pennsylvania. One challenge and contribution of this work is the development of a methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques. Overall, SPEA2 attained competitive to superior results for most of the problems tested in this study. The primary strengths of the SPEA2 algorithm lie in its search reliability and its diversity preservation operator. The biggest challenge in maximizing the performance of SPEA2 lies in specifying an effective archive size without a priori knowledge of the Pareto set. In practice, this would require significant trial-and-error analysis, which is problematic for more complex, computationally intensive calibration applications. ?-NSGAII appears to be superior to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration. ?-NSGAII's primary strength lies in its ease-of-use due to its dynamic population sizing and archiving which lead to rapid convergence to very high quality solutions with minimal user input. MOSCEM-UA is best suited for hydrologic model calibration applications that have small parameter sets and small model evaluation times. In general, it would be expected that MOSCEM-UA's performance would be met or exceeded by either SPEA2 or ?-NSGAII

    Experimental evidence of differences in the absorption spectra of clustered and isolated ions in erbium doped fibers

    Full text link
    The absorption spectra of clustered and isolated ions in erbium-doped germanosilicate fibers have been experimentally studied. The ground state absorption spectra broaden as the degree of erbium-ion clustering increases, indicating that the absorption spectra of clustered ions is significantly different from that of the homogeneous ions. This is confirmed by comparing the broadened absorption spectra with the fibre unbleachable loss spectrum; a direct measurement of the clustered ions. This is the first experimental evidence indicating different absorption cross-sections for the two species of ions in germanosilicate glass, an assumption used in the theoretical description of self-pulsing in erbium doped fiber lasers, but in direct contradiction to the pair-induced quenching model widely used to characterise EDFAs

    Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings

    Get PDF
    The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudomonochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo-and thermal-emission characteristics of the quantum rings. (C) 2014 AIP Publishing LLC

    Human impact on long-term organic carbon export to rivers

    Get PDF
    Anthropogenic landscape alterations have increased global carbon transported by rivers to oceans since preindustrial times. Few suitable observational data sets exist to distinguish different drivers of carbon increase, given that alterations only reveal their impact on fluvial dissolved organic carbon (DOC) over long time periods. We use the world's longest record of DOC concentrations (130 years) to identify key drivers of DOC change in the Thames basin (UK). We show that 90% of the long-term rise in fluvial DOC is explained by increased urbanization, which released to the river 671 kt C over the entire period. This source of carbon is linked to rising population, due to increased sewage effluent. Soil disturbance from land use change explained shorter-term fluvial responses. The largest land use disturbance was during the Second World War, when almost half the grassland area in the catchment was converted into arable land, which released 45 kt C from soils to the river. Carbon that had built up in soils over decades was released to the river in only a few years. Our work suggests that widespread population growth may have a greater influence on fluvial DOC trends than previously thought

    Simulation of the enhanced infrared photoresponse of type-II GaSb/GaAs quantum ring solar cells

    Get PDF
    The extended photo-response of solar cells containing ten periods of GaSb/GaAs quantum rings imbedded in the p-i-n junction has been described using a single-band representation of the type-II quantum ring structure. By fitting the experimental data, the authors were able to deduce that the quantum rings are well represented by a Gaussian height distribution and a large valence band discontinuity. The simulated band of states is shown to be well matched to the photoluminescence analysis of the structure, with the inhomogeneous size distribution resulting in a band of hole states roughly 390ā€‰meV above the valence band
    • ā€¦
    corecore