67 research outputs found

    Small palladium islands embedded in palladium-tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction

    Get PDF
    The sluggish kinetics of the oxygen reduction reaction at the cathode side of proton exchange membrane fuel cells is one major technical challenge for realizing sustainable solutions for the transportation sector. Finding efficient yet cheap electrocatalysts to speed up this reaction therefore motivates researchers all over the world. Here we demonstrate an efficient synthesis of palladium-tungsten bimetallic nanoparticles supported on ordered mesoporous carbon. Despite a very low percentage of noble metal (palladium: tungsten = 1:8), the hybrid catalyst material exhibits a performance equal to commercial 60% platinum/Vulcan for the oxygen reduction process. The high catalytic efficiency is explained by the formation of small palladium islands embedded at the surface of the palladium-tungsten bimetallic nanoparticles, generating catalytic hotspots. The palladium islands are similar to 1 nm in diameter, and contain 10-20 palladium atoms that are segregated at the surface. Our results may provide insight into the formation, stabilization and performance of bimetallic nanoparticles for catalytic reactions

    Electron Spin Density Distribution in the Polymer Phase of CsC 60 : Assignment of the NMR Spectrum

    Get PDF
    We present high resolution 133 Cs-13 C double resonance NMR data and 13 C-13 C NMR correlation spectra of 13 C enriched samples of the polymeric phase of CsC 60 . These data lead to a partial assignment of the lines in the 13 C NMR spectrum of CsC 60 to the carbon positions on the C 60 molecule. A plausible completion of the assignment can be made on the basis of an ab initio calculation. The data support the view that the conduction electron density is concentrated at the C 60 "equator," away from the interfullerene bonds. PACS numbers: 71.20.Tx, 76.70.Fz The electronic and magnetic properties of the alkali intercalated fullerides, A n C 60 , are still only partly understood. The case A Rb, Cs, n 1 has attracted particular interest The basic structural features of the polymer phase, such as the dimensions of the unit cell, C 60 center positions, and the 2 1 2 cycloaddition polymerization along the crystallographic a axis are widely supported through x-ray diffraction However the degree of deformation of the C 60 balls [25] and the rotational orientation of the polymer chains are less well characterized. Neutron diffraction NMR has proven a useful probe of structure and electronic properties both for the broader class of alkali intercalated fulleride materials In order to obtain sufficient sensitivity, samples of CsC 60 were synthesized using 13 C enriched fullerenes. These were prepared by packing and sintering 13 C enriched amorphous carbon into graphite tubes to create 13 C enriched carbon rods. The fullerenes were subsequently produced by arcing a 60 A, 25 V dc current between an ordinar

    Reduction free room temperature synthesis of a durable and efficient Pd/ordered mesoporous carbon composite electrocatalyst for alkaline direct alcohols fuel cell

    No full text
    The development of easy and environmentally benign synthesis methods of efficient electrocatalysts for use in energy conversion applications motivates researchers all over the world. Here we report a novel and versatile method to synthesize well-dispersed palladium-functionalized ordered mesoporous carbons (Pd-OMCs) at room temperature without any reducing agent by one-pot mixing of tri(dibenzylideneacetone) palladium(0) (Pd(2)DBA(3)) and OMCs together in a common N,N-dimethylformamide (DMF) solution. The formation of Pd nanoparticles and their crystallization on the OMC is catalyzed by protons in the solution and can thus be controlled by the solution pH. The complete process and the as-prepared nanocomposite was characterized by UV-spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The electrocatalytic property of the decorated material was examined with cyclic voltammetry (CV). The Pd-OMC composite shows up to two times higher electrocatalytic ability with a significantly better durability towards ethanol and methanol oxidation in alkaline media compared to commercial high surface area conductive carbon black Vulcan XC-72 decorated with equivalent Pd nanoparticles. Our described method provides new insight for the development of highly efficient carbon based nanocatalysts by simple and environmentally sound methods

    Le Grand Ă©cho du Nord de la France

    No full text
    15 décembre 19051905/12/15 (A87,N348).Appartient à l’ensemble documentaire : NordPdeC

    Polyelectrolyte-Assisted Dispersions of Reduced Graphite Oxide Nanoplates in Water and Their Gas-Barrier Application

    No full text
    Dispersion of graphene and related materials in water is needed to enable sustainable processing of these 2D materials. In this work, we demonstrate the capability of branched polyethylenimine (BPEI) and polyacrylic acid (PAA) to stabilize reduced graphite oxide (rGO) dispersions in water. Atomic force microscopy colloidal probe measurements were carried out to investigate the interaction mechanisms between rGO and the polyelectrolytes (PEs). Our results show that for positive PEs, the interaction appears electrostatic, originating from the weak negative charge of graphene in water. For negative PEs, however, van der Waals forces may result in the formation of a PE shell on rGO. The PE-stabilized rGO dispersions were then used for the preparation of coatings to enhance gas barrier properties of polyethylene terephthalate films using the layer-by-layer self-assembly. Ten bilayers of rGOBPEI/rGOPAA resulted in coatings with excellent barrier properties as demonstrated by oxygen transmission rates below detection limits [<0.005 cm3/(m2 day atm)]. The observed excellent performance is ascribed to both the high density of the deposited coating and its efficient stratification. These results can enable the design of highly efficient gas barrier solutions for demanding applications, including oxygen-sensitive pharmaceutical products or flexible electronic devices

    Direct support mixture painting, using Pd(0) organo-metallic compounds - an easy and environmentally sound approach to combine decoration and electrode preparation for fuel cells

    No full text
    An inventive, fast and straight-forward approach for the direct preparation of fuel cell electrodes has been developed and tested. Our approach avoids long catalyst preparation and post-synthesis treatment. It reduces the use of chemicals and thereby concomitantly lowers the environmental impact and improves cost efficiency. It combines decoration of the support by palladium nanoparticles with electrode preparation through a simple one-step ink-painting and annealing process. Composites have been investigated by high resolution transmission electron microscopy, scanning electron microscopy, and Xray diffraction. Crystalline particles are well-attached and well-distributed on the support. Particles are of few nanometers in size and spherical for decorated Vulcan whereas they are larger and irregularly shaped for decorated helical carbon nanofibers (HCNFs). Electrodes with a metal loading of 0.8 mg cm(-2) have been tested in a direct formic acid fuel cell. Both the Vulcan and the HCNF electrodes show a similar and high power output of up to 120 mW mg(-1). They also show similar performances in deactivation experiments conducted at 200 mA cm(-2) even when using only high purity grade formic acid. After deactivation the electrodes show no structural damage, making them superior to most commercial catalysts. The electrodes can be completely regenerated to initial activity by simple treatment with water. The easy regeneration process indicates that CO-adsorption on the fuel cell anode catalyst is not the main poisoning mechanism responsible for electrode degeneration

    Deactivation resistant Pd-ZrO2 supported on multiwall carbon nanotubes catalyst for direct formic acid fuel cells

    No full text
    One of the main problems of palladium based catalysts for a direct formic acid fuel cell (DFAFC) is their low stability during a long-term operation. In these studies, the Pd-ZrO2 catalyst supported on the multiwall carbon nanotubes (MWCNTs) was prepared and thermo-chemically treated. These catalysts were tested in a fuel cell for formic acid electrooxidation, and their chemical composition and structure were characterised by the XPS, STEM, HR-TEM and XRD techniques. It was found that the Pd-ZrO2/MWCNTs catalyst after synthesis causes oscillations of the cell voltage during operation resulting in significantly higher deactivation resistance than that of Pd/MWCNTs. This may be attributed to the "self-cleaning" mechanism of poisoned Pd catalyst by carbon monoxide through the electrochemical oxidation of COads (adsorbed) to CO2 (gas)

    Molecular Dynamics and Phase Transition in One-Dimensional Crystal of C-60 Encapsulated Inside Single Wall Carbon Nanotubes

    No full text
    One-dimensional crystals of 25% C-13-enriched C-60 encapsulated inside highly magnetically purified SWNTs were investigated by following the temperature dependence of the C-13 NMR line shapes and the relaxation rates from 300 K down to 5 K. High-resolution MAS techniques reveal that 32% of the encapsulated molecules, so-called the C-60(alpha), are blocked at room temperature and 68%, labeled C-60(beta), are shown to reversly undergo molecular reorlentational dynamics. Contrary to previous NMR studies, spin - lattice relaxation time reveals a phase transition at 100 K associated with the changes in the nature of the C-60(beta) dynamics. Above the transition, the C-60(beta) exhibits continuous rotational diffusion; below the transition, C-60(beta) executes uniaxial hindered rotations most likely along the nanotubes axis and freeze out below 25 K. The associated activation energies of these two dynamical regimes are measured to be 6 times lower than in fcc-C-60, suggesting a quiet smooth orientational dependence of the interaction between C-60(beta) molecules and the inner surface of the nanotubes
    • …
    corecore