4 research outputs found

    Essential and Recovery Oils from Matricaria chamomilla Flowers as Environmentally Friendly Fungicides Against Four Fungi Isolated from Cultural Heritage Objects

    No full text
    Recovery oils, obtained from the hydro-distillation of the fresh flowers of Matricaria chamomilla, as well as essential oils, were studied for their environmental purposes in cultural heritage. These oils were assayed for their antifungal activity against the growth of four molds isolated from archaeological manuscripts (Aspergillus niger), museum gypsum board Antique (A. flavus), museum archaeological tissue (A. terreus), and museum organic materials (Fusarium culmorum) of cultural heritage objects. Oils were applied to inhibit the growth of fungi at amounts of 25, 50, 75 and, 100 µL/mL, and compared with negative controls (0 µL/mL) or positive controls (Sertaconazol 3g/L). Using GC/MS analysis, the main chemical compounds identified in the essential oil were (Z)-β-farnesene (27%), D-limonene (15.25%), and α-bisabolol oxide A (14.9%), while the compounds identified in the recovery oil were α-bisabolol oxide A (18.6%), d-limonene (8.82%), and α-bisabolol oxide B (7.13%). A low amount of chamazulene was observed in both essential and recovery oils, with amounts of 0.73% and 3.50%, respectively. Recovery oil, at a concentration of 75 and 100 µL/mL, showed fungal mycelial inhibition (FMI) percentage for the growth of A. niger, with values of 78% and 85%, respectively. At a concentration of 100 µL/mL, both oils showed 100% FMI of A. terreus. Oils showed weak activity against the growth of A. flavus. Essential oils at 100 µL/mL had good activity against the growth of F. culmorum, with FMI of 86.6%. The results suggest the potential use of essential and recovery oils from M. chamomilla fresh flowers as environmentally friendly bio-fungicides

    Assessment of the Impact of Different Treatments on the Technological and Antifungal Properties of Papyrus (<i>Cyperus Papyrus</i> L.) Sheets

    No full text
    In the present work, sheets of Papyrus (Cyperus papyrus L.), manufactured by lamination from strips pre-treated with different treatments, were evaluated for their technological and fungal infestation properties (Aspergillus flavus AFl375, A. niger Ani245 and Colletotrichum gloeosporioides Cgl311). The results showed that the highest values of tensile strength, tear strength, burst index and double-fold number were observed in papyrus sheets produced from strips treated with nano-cellulose (0.25%), dimethyl sulfoxide (DMSO 10%), Tylose (0.25%) and nano-cellulose (0.5%), with values of 98.90 N&#183;m/g, 2343.67 mN&#183;m2/g, 1162 kpa&#183;m2/g and 8.33, respectively. The percentage of brightness ranged from 49.7% (strips treated with KOH 2% + 100 mL NaClO) to 9.6% (strips treated with Eucalyptus camaldulensis bark extract 2%), while the percentage of darkness ranged from 99.86% (strips treated with Salix babylonica leaf extract 2% or E. camaldulensis bark extract 0.5%) to 67.26% (strips treated with NaOH (2%) + 100 mL NaClO). From the SEM examination, sheets produced from treated strips with extracts from P. rigida and E. camaldulensis or S. babylonica showed no growths of A. flavus and C. gloeosporioides. Additionally, other pre-treatments, such as Nano-cellulose+Tylose 0.5% (1:1 v/v) and Tylose 0.5%, were also found to have no growth of A. niger. In conclusion, strips pre-treated with nanomaterials and extracts were enhanced in terms of the technological and antifungal properties of produced Papyrus sheets, respectively

    GC–MS, quantum mechanics calculation and the antifungal activity of river red gum essential oil when applied to four natural textiles

    No full text
    Abstract The most important uses of old fabrics include clothing, mummification, and bookbinding. However, because they are predominantly constructed of natural materials, they are particularly susceptible to physical and chemical deterioration brought on by fungi. The treatments that are typically used to preserve old textiles focus on the use of synthetic fungicides, which have the potential to be dangerous for both human health and the environment. Essential oils (EOs), which are safe for the environment and have no negative effects on human health, have been widely advocated as an alternative to conventional antifungals. Four natural fabrics—linen, cotton, wool, and silk—were utilized in the current work. The extracted EO from leaves of river red gum (Eucalyptus camaldulensis Dehnh.) were prepared at 125, 250, and 500 µL/L. Aspergillus flavus, Fusarium culmorum and Aspergillus niger were inoculated separately into the treated four fabrics with the EO at concentrations of 125, 250, and 500 µL/L or the main compounds (spathulenol and eucalyptol) at the concentrations of 6, 12, 25, and 50 µL/L and were then compared to the un-treated samples. GC–MS was used to analyze the EO chemical composition, while visual observations and scanning electron microscopic (SEM) were used to study the fungal growth inhibition. Spathulenol (26.56%), eucalyptol (14.91%), and p-cymene (12.40%) were the principal chemical components found in E. camaldulensis EO by GC–MS. Spathulenol molecule displayed the highest electrostatic potential (ESP) compared with the other primary compound, as calculated by quantum mechanics. In the untreated textile samples, SEM analysis revealed substantial proliferation of hyphae from A. flavus, F. culmorum, and A. niger. The fungal growth was completely inhibited at a concentration of 500 µL/L from the EO. Both eucalyptol and spathulenol completely inhibited the formation of the fungal spores at a concentration of 50 µL/L, although eucalyptol was more effective than spathulenol across the board for all four textiles. The results support E. camaldulensis EO functionalized textiles as an effective active antifungal agent

    The Effects of Iron Rust on the Ageing of Woods and Their Derived Pulp Paper

    No full text
    The accelerated ageing of wood in terms of heating or iron rusting has a potential effect on the physio-mechanical, chemical and biological properties of wood. The effects of accelerated ageing on the mechanical, physical and fungal activity properties of some wood materials (Schinus terebinthifolius, Erythrina humeana, Tectona grandis, Pinus rigida and Juglans nigra) were studied after several cycles of heating and iron rusting. The fungal activity was assayed against the growth of Aspergillus terreus, Aspergillus niger, Fusarium culmorum and Stemphylium solani. In addition, the mechanical and optical properties of paper sheets produced from those wood pulps by means of Kraft cooking were evaluated. The mechanical and chemical properties of the studied wood species were affected significantly (p &lt; 0.05) by the accelerated ageing, compared to control woods. With Fourier transform infrared (FTIR) spectroscopy, we detected an increase in the intensity of the spectra of the functional groups of cellulose in the heated samples, which indicates an increase in cellulose content and decrease in lignin content, compared to other chemical compounds. For pulp properties, woods treated by heating showed a decrease in the pulp yield. The highest significant values of tensile strength were observed in pulp paper produced from untreated, heated and iron-rusted P. rigida wood and they were 69.66, 65.66 and 68.33 N·m/g, respectively; we calculated the tear resistance from pulp paper of untreated P. rigida (8.68 mN·m2/g) and T. grandis (7.83 mN·m2/g) and rusted P. rigida (7.56 mN·m2/g) wood; we obtained the values of the burst strength of the pulp paper of untreated woods of P. rigida (8.19 kPa·m2/g) and T. grandis (7.49 kPa·m2/g), as well as the fold number of the pulp paper of untreated, heated and rusted woods from P. rigida, with values of 195.66, 186.33 and 185.66, respectively. After 14 days from the incubation, no fungal inhibition zones were observed. Accelerated ageing (heated or iron-rusted) produced significant effects on the mechanical and chemical properties of the studied wood species and affected the properties of the produced pulp paper
    corecore