3 research outputs found

    Multi-Layer Web Services Discovery Using Word Embedding and Clustering Techniques

    No full text
    We propose a multi-layer data mining architecture for web services discovery using word embedding and clustering techniques to improve the web service discovery process. The proposed architecture consists of five layers: web services description and data preprocessing; word embedding and representation; syntactic similarity; semantic similarity; and clustering. In the first layer, we identify the steps to parse and preprocess the web services documents. In the second layer, Bag of Words with Term Frequency–Inverse Document Frequency and three word-embedding models are employed for web services representation. In the third layer, four distance measures, namely, Cosine, Euclidean, Minkowski, and Word Mover, are considered to find the similarities between Web services documents. In layer four, WordNet and Normalized Google Distance are employed to represent and find the similarity between web services documents. Finally, in the fifth layer, three clustering algorithms, namely, affinity propagation, K-means, and hierarchical agglomerative clustering, are investigated for clustering of web services based on observed similarities in documents. We demonstrate how each component of the five layers is employed in web services clustering using randomly selected web services documents. We conduct experimental analysis to cluster web services using a collected dataset consisting of web services documents and evaluate their clustering performances. Using a ground truth for evaluation purposes, we observe that clusters built based on the word embedding models performed better than those built using the Bag of Words with Term Frequency–Inverse Document Frequency model. Among the three word embedding models, the pre-trained Word2Vec’s skip-gram model reported higher performance in clustering web services. Among the three semantic similarity measures, path-based WordNet similarity reported higher clustering performance. By considering the different word representations models and syntactic and semantic similarity measures, we found that the affinity propagation clustering technique performed better in discovering similarities among Web services

    Enhancing Workplace Safety: PPE_Swin—A Robust Swin Transformer Approach for Automated Personal Protective Equipment Detection

    No full text
    Accidents occur in the construction industry as a result of non-compliance with personal protective equipment (PPE). As a result of diverse environments, it is difficult to detect PPE automatically. Traditional image detection models like convolutional neural network (CNN) and vision transformer (ViT) struggle to capture both local and global features in construction safety. This study introduces a new approach for automating the detection of personal protective equipment (PPE) in the construction industry, called PPE_Swin. By combining global and local feature extraction using the self-attention mechanism based on Swin-Unet, we address challenges related to accurate segmentation, robustness to image variations, and generalization across different environments. In order to train and evaluate our system, we have compiled a new dataset, which provides more reliable and accurate detection of personal protective equipment (PPE) in diverse construction scenarios. Our approach achieves a remarkable 97% accuracy in detecting workers with and without PPE, surpassing existing state-of-the-art methods. This research presents an effective solution for enhancing worker safety on construction sites by automating PPE compliance detection

    Computational intelligence modeling using Artificial Intelligence and optimization of processing of small-molecule API solubility in supercritical solvent

    No full text
    Preparation of small-molecule API (Active Pharmaceutical Ingredient) at submicron size would be of great benefit for pharmaceutical engineering, as the drug particles at submicron size possess higher solubility in water. Indeed, the drug bioavailability can be enhanced when the nanomedicine is prepared. In this study, the solubility of the drug desoxycorticosterone acetate (DA) is being examined to assess its viability of nanonization using supercritical operation. Two inputs are temperature and pressure which were considered for machine learning modeling in this study. The drug's solubility is the only output to be estimated by the optimized models. This dataset has 45 rows of data that were gathered at 5 different pressure and temperature levels. Support vector machine (SVM) is used as the core of the models built in this research. Epsilon-SVR and nu-SVR are models based on this concept, which together with two different polynomial and RBF kernels form the four models built in this research for estimation of DA drug solubility. The models are also optimized with the help of a new TLCO method. All four final models have an R2 score higher than 0.9, and among them, the Epsilon-SVR model with RBF kernel has the best performance with 0.967
    corecore