595 research outputs found
Coordinated Dynamic Spectrum Management of LTE-U and Wi-Fi Networks
This paper investigates the co-existence of Wi-Fi and LTE in emerging
unlicensed frequency bands which are intended to accommodate multiple radio
access technologies. Wi-Fi and LTE are the two most prominent access
technologies being deployed today, motivating further study of the inter-system
interference arising in such shared spectrum scenarios as well as possible
techniques for enabling improved co-existence. An analytical model for
evaluating the baseline performance of co-existing Wi-Fi and LTE is developed
and used to obtain baseline performance measures. The results show that both
Wi-Fi and LTE networks cause significant interference to each other and that
the degradation is dependent on a number of factors such as power levels and
physical topology. The model-based results are partially validated via
experimental evaluations using USRP based SDR platforms on the ORBIT testbed.
Further, inter-network coordination with logically centralized radio resource
management across Wi-Fi and LTE systems is proposed as a possible solution for
improved co-existence. Numerical results are presented showing significant
gains in both Wi-Fi and LTE performance with the proposed inter-network
coordination approach.Comment: Accepted paper at IEEE DySPAN 201
Hidden structural dynamics of human 7SK RNA revealed by deconvolution and annotation of ribonucleic conformational ensembles (DANCE-MaP)
7SK is an essential non-coding RNA that regulates eukaryotic transcription bysequestering positive transcription elongation factor b (P-TEFb). 7SK regulatory function likelyentails changes in RNA structure, but characterizing dynamic RNA-protein complexes in cellshas remained a critical challenge. We describe a new chemical probing strategy (DANCE-MaP)that uses maximum likelihood deconvolution and probabilistic read assignment to definesimultaneously (i) per-nucleotide reactivity profiles, (ii) direct base pairing interactions, and (iii)tertiary and higher-order interactions for each conformation of multi-state RNA structuralensembles, all from a single experiment. We show that human 7SK RNA, despite significantheterogeneity, intrinsically codes for a large-scale structural switch that couples dissolution ofthe P-TEFb binding site to structural remodeling at distal release factor binding sites. The 7SKstructural equilibrium is regulated by cell type and dynamically shifts in response to stress. Wefurther demonstrate an antisense oligonucleotide strategy for inducing 7SK structural switchingto modulate transcription in cells. Collectively, our data indicate that the 7SK structuralensemble functions as an integrator of diverse cellular signals to control transcription elongation.Doctor of Philosoph
Chalcone and Cinnamate Synthesis via One-Pot Enol Silane Formation-Mukaiyama Aldol Reactions of Ketones and Acetate Esters
Aryl alkyl ketones, acetate esters, and acetamides undergo facile one-pot enol silane formation, Mukaiyama aldol addition, and dehydrosilyloxylation in the presence of an amine base and excess trimethylsilyl trifluoromethanesulfonate. The chalcone and cinnamate products are generally recovered in high yield. The relative stoichiometry of the trimethylsilyl trifluoromethanesulfonate and amine base reagents determines whether the reaction yields the β- silyloxy carbonyl product or the α, β -unsaturated carbonyl
Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations
Biomolecular condensates form via coupled associative and segregative phase transitions of multivalent associative macromolecules. Phase separation coupled to percolation is one example of such transitions. Here, we characterize molecular and mesoscale structural descriptions of condensates formed by intrinsically disordered prion-like low complexity domains (PLCDs). These systems conform to sticker-and-spacers architectures. Stickers are cohesive motifs that drive associative interactions through reversible crosslinking and spacers affect the cooperativity of crosslinking and overall macromolecular solubility. Our computations reproduce experimentally measured sequence-specific phase behaviors of PLCDs. Within simulated condensates, networks of reversible inter-sticker crosslinks organize PLCDs into small-world topologies. The overall dimensions of PLCDs vary with spatial location, being most expanded at and preferring to be oriented perpendicular to the interface. Our results demonstrate that even simple condensates with one type of macromolecule feature inhomogeneous spatial organizations of molecules and interfacial features that likely prime them for biochemical activity
Welfare impacts of conservation agriculture adoption on smallholder maize farmers in South Africa
Climate change and soil degradation are the issues depleting the soil's ability to promote good yield. One of the ways to combat this is the practice of conservation agriculture (CA). This study was carried out to explore and investigate the impact of CA. Multinomial endogenous switching regression model and cross-sectional data were used to investigate the determinants and the impact of the adoption of CA on the income of smallholder maize farmers in Mpumalanga Province, South Africa. Three categories of CA (minimum tillage, crop diversification and a combination of both minimum tillage and crop diversification) were considered. The empirical results revealed that regardless of the choices of CA practices adopted by the maize farmers, the income realized was higher for adopters than for non-adopters of CA practices. The average treatment effect for the adopters of both minimum tillage and crop diversification was the highest, showing an increase in income by 60.31% (R15575.99/$996.57USD) compared to the non-adopters. The policy implication for these results is that there is a need to promote the adoption of CA practices, particularly a combination of both minimum tillage and crop diversification, given their significant impact on farmer income, an important welfare outcome that has significant implications on food security and poverty alleviation.https://www.cambridge.org/core/journals/renewable-agriculture-and-food-systemshj2023Agricultural Economics, Extension and Rural Developmen
Multivariate Patterns in the Human Object-Processing Pathway Reveal a Shift from Retinotopic to Shape Curvature Representations in Lateral Occipital Areas, LO-1 and LO-2
Representations in early visual areas are organized on the basis of retinotopy, but this organizational principle appears to lose prominence in the extrastriate cortex. Nevertheless, an extrastriate region, such as the shape-selective lateral occipital cortex (LO), must still base its activation on the responses from earlier retinotopic visual areas, implying that a transition from retinotopic to “functional” organizations should exist. We hypothesized that such a transition may lie in LO-1 or LO-2, two visual areas lying between retinotopically defined V3d and functionally defined LO. Using a rapid event-related fMRI paradigm, we measured neural similarity in 12 human participants between pairs of stimuli differing along dimensions of shape exemplar and shape complexity within both retinotopically and functionally defined visual areas. These neural similarity measures were then compared with low-level and more abstract (curvature-based) measures of stimulus similarity. We found that low-level, but not abstract, stimulus measures predicted V1–V3 responses, whereas the converse was true for LO, a double dissociation. Critically, abstract stimulus measures were most predictive of responses within LO-2, akin to LO, whereas both low-level and abstract measures were predictive for responses within LO-1, perhaps indicating a transitional point between those two organizational principles. Similar transitions to abstract representations were not observed in the more ventral stream passing through V4 and VO-1/2. The transition we observed in LO-1 and LO-2 demonstrates that a more “abstracted” representation, typically considered the preserve of “category-selective” extrastriate cortex, can nevertheless emerge in retinotopic regions
Impact of alternative footwear on human energy expenditure
Purpose: Use of alternative footwear options such as flip-flop style sandals and minimalist athletic shoes are becoming increasingly popular footwear choices. The purpose of the investigation was to analyze the energy expenditure and oxygen consumption requirements of walking at preferred pace while wearing flip-flops, slip-on style shoes, and minimalist athletic shoes. Methods: Eighteen healthy male adults participated in this study. In addition to an initial familiarization session, participants were tested in three different footwear conditions [thong-style flip-flops (FF), Croc® slip on shoes (CROC), and Vibram Fivefingers® minimalist shoes (MIN)]. Then after a brief warm-up, participants walked a one-mile distance at their preferred pace. Immediately following completion of the one-mile walk, participants stood quietly on the treadmill for an additional period to assess excess post-exercise oxygen consumption (EPOC). Results: A repeated-measures ANOVA that the following variables did not show evidence of a significant differently value between conditions: preferred pace (p = 0.392), average oxygen consumption (p = 0.804), energy expenditure per mile (p = 0.306), or EPOC (p = 0.088). There was shown to be a significantly higher RER during exercise in CROC compared to MIN (p = 0.031) with no significant differences observed when comparing CROC to FF (p = 0.106) or FF to MIN (p = 0.827). Conclusion: Based on the results of the current study, it appears that the alternative footwear selected for evaluation do not lead to a substantial alteration of walking pace or overall EE. However, the significant difference in RER suggesting a slightly elevated exercise intensity while wearing the CROC could perhaps be related to the softer sole, influencing overall mechanical efficiency.The study was funded by a grant awarded by the Graduate Student Council at the author’s University
Complex responses of birds to landscape-level fire extent, fire severity and environmental drivers
Aim: To quantify bird responses to a large unplanned fire, taking into consideration landscape-level fire severity and extent, pre-fire site detection frequency and environmental gradients. Location: South-eastern Australia. Methods: A major wildfire in 2009 coincided with a long-term study of birds and provided a rare opportunity to quantify bird responses to wildfire. Using hierarchical Bayesian analysis, we modelled bird species richness and the detection frequency of individual species in response to a suite of explanatory variables, including (1) landscape-level fire severity and extent (2) pre-fire detection frequency, (3) site-level vegetation density and (4) environmental variables (e.g. elevation and topography). Results: Landscape-level fire severity had strong effects on bird species richness and the detection frequency of the majority of bird species. These effects varied markedly between species; most responded negatively to amount of severely burned forest in the landscape, one negatively to the amount of moderately burned forest and one responded negatively to the total area of burned forest. Only one species - the Flame Robin - responded positively to the amount of burned forest. Relationships with landscape-scale fire extent changed over time for one species - the Brown Thornbill - with initially depressed rates of detection recovering after just 2 years. The majority of species were significantly more likely to be detected in burned areas if they have been recorded there prior to the fire. Main conclusions: Birds responded strongly to the severity and spatial extent of fire. They also exhibited strong site fidelity even after severe wildfire which causes profound changes in vegetation cover - a response likely influenced by environmental features such as elevation and topography
Non-linear growth in tree ferns, Dicksonia antarctica and Cyathea australis
Tree ferns are an important structural component of forests in many countries. However, because their regeneration is often unrelated to major disturbances, their age is often difficult to determine. In addition, rates of growth may not be uniform, which further complicates attempts to determine their age. In this study, we measured 5 years of growth of Cyathea australis and Dicksonia antarctica after a large wildfire in 2009 in south-eastern Australia. We found growth rates of these two species were unaffected by aspect and elevation but slope had a minor effect with D. antarctica growing 0.3mm faster for each additional degree of slope. Geographic location influenced growth in both species by up to 12 – 14mm/yr. The most consistent factor influencing growth rate, however, was initial height at the time of the 2009 fire; a finding consistent in both species and all geographic locations. For both tree fern species, individuals that were taller at the commencement of the study had greater overall growth for the duration of the study. This effect did not decrease even among the tallest tree ferns in our study (up to 6 metres tall). Overall, Cyathea australis averaged 73 (± 22)mm/year of growth (± 1SD), with the rate increasing 5mm/yr per metre of additional height. Dicksonia antarctica averaged 33 (± 13)mm/year, increasing by 6mm/yr/m. Growth rates dependent on initial height were unexpected and we discuss possible reasons for this finding. Variable growth rates also suggest that common age estimation methods of dividing height by average growth rate are likely to underestimate the age of short tree ferns, while overestimating the age of tall tree ferns, particularly if they have been subject to a fire.This work was funded by the Australian Research Council, Victorian Government (Department of Environment, Land, Water and Planning and Parks Victoria), Wood Foundation
- …