2,043 research outputs found
Gamma ray emission from the region of the galactic center
A combination nuclear emulsion-spark chamber gamma ray (E=100 MeV) telescope was used to study the region of sky that includes the Galactic Center. 95% confidence upper limits on the flux from the reported sources G gamma 2 - 3 and Sgr gamma-1 were placed at 4.4 and 8.8 x 10 to the minus 5th power protons/sq cm-sec, and a similar limit on the emission from the Galactic Center as a point source (plus or minus .75 degrees) was placed at 3.3 x 10 to the minus 5th power protons/sq cm-sec. No enhanced emission was observed from the Galactic Plane (plus or minus 6 degrees) and an upper limit of 2 x 10 to the minus 4th power protons/sq cm-sec rad/ was obtained
Weathering the storm: developments in the acoustic sensing of wind and rain
An Acoustic Rain Gauge (ARG) analyses the underwater sound levels across a wide frequency range, classifies the observed spectrum according to likely source and then determines the local wind speed or rain rate as appropriate. Thispaper covers a trial on the Scotian Shelf off Canada, comparing the geophysical information derived from the acoustic signals with those obtained from other sources
Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype
This article is available open access through the publisherâs website at the link below. Copyright @ 2009 Landes Bioscience.The potential of mesenchymal stem cells (MSC) to differentiate into neural lineages has raised the possibility of autologous cell transplantation as a therapy for neurodegenerative diseases. We have identified a population of circulating human fetal mesenchymal stem cells (hfMSC) that are highly proliferative and can readily differentiate into mesodermal lineages such as bone, cartilage, fat and muscle. Here, we demonstrate for the first time that primary hfMSC can differentiate into cells with an oligodendrocyte phenotype both in vitro and in vivo. By exposing hfMSC to neuronal conditioned medium or by introducing the pro-oligodendrocyte gene, Olig-2, hfMSC adopted an oligodendrocyte-like morphology, expressed oligodendrocyte markers and appeared to mature appropriately in culture. Importantly we also demonstrate the differentiation of a clonal population of hfMSC into both mesodermal (bone) and ectodermal (oligodendrocyte) lineages. In the developing murine brain transplanted hfMSC integrated into the parenchyma but oligodendrocyte differentiation of these naĂŻve hfMSC was very low. However, the proportion of cells expressing oligodendrocyte markers increased significantly (from 0.2% to 4%) by pre-exposing the cells to differentiation medium in vitro prior to transplantation. Importantly, the process of in vivo differentiation occurred without cell fusion. These findings suggest that hfMSC may provide a potential source of oligodendrocytes for study and potential therapy
Canalization and Symmetry in Boolean Models for Genetic Regulatory Networks
Canalization of genetic regulatory networks has been argued to be favored by
evolutionary processes due to the stability that it can confer to phenotype
expression. We explore whether a significant amount of canalization and partial
canalization can arise in purely random networks in the absence of evolutionary
pressures. We use a mapping of the Boolean functions in the Kauffman N-K model
for genetic regulatory networks onto a k-dimensional Ising hypercube to show
that the functions can be divided into different classes strictly due to
geometrical constraints. The classes can be counted and their properties
determined using results from group theory and isomer chemistry. We demonstrate
that partially canalized functions completely dominate all possible Boolean
functions, particularly for higher k. This indicates that partial canalization
is extremely common, even in randomly chosen networks, and has implications for
how much information can be obtained in experiments on native state genetic
regulatory networks.Comment: 14 pages, 4 figures; version to appear in J. Phys.
Co/Ni element ratio in the galactic cosmic rays between 0.8 and 4.3 GeV/nucleon
In a one-day balloon flight of the Trans-Iron Galactic Element Recorder (TIGER) in 1997, the instrument achieved excellent charge resolution for elements near the Fe peak, permitting a new measurement of the element ratio Co/Ni. The best fit to the data, extrapolated to the top of the atmosphere, gives an upper limit for this ratio of 0.093Âą0.037 over the energy interval 0.8 to 4.3 GeV/nucleon; because a Co peak is not seen in the data, this result is given as an upper limit. Comparing this upper limit with calculations by Webber & Gupta suggests that at the source of these cosmic rays a substantial amount of the electron-capture isotope 59Ni survived. This conclusion is in conflict with the clear evidence from ACE/CRIS below 0.5 GeV/nucleon that there is negligible 59Ni surviving at the source. Possible explanations for this apparent discrepancy are discussed
Replica symmetry breaking in an adiabatic spin-glass model of adaptive evolution
We study evolutionary canalization using a spin-glass model with replica
theory, where spins and their interactions are dynamic variables whose
configurations correspond to phenotypes and genotypes, respectively. The spins
are updated under temperature T_S, and the genotypes evolve under temperature
T_J, according to the evolutionary fitness. It is found that adaptation occurs
at T_S < T_S^{RS}, and a replica symmetric phase emerges at T_S^{RSB} < T_S <
T_S^{RS}. The replica symmetric phase implies canalization, and replica
symmetry breaking at lower temperatures indicates loss of robustness.Comment: 5pages, 2 figure
Shaping Robust System through Evolution
Biological functions are generated as a result of developmental dynamics that
form phenotypes governed by genotypes. The dynamical system for development is
shaped through genetic evolution following natural selection based on the
fitness of the phenotype. Here we study how this dynamical system is robust to
noise during development and to genetic change by mutation. We adopt a
simplified transcription regulation network model to govern gene expression,
which gives a fitness function. Through simulations of the network that
undergoes mutation and selection, we show that a certain level of noise in gene
expression is required for the network to acquire both types of robustness. The
results reveal how the noise that cells encounter during development shapes any
network's robustness, not only to noise but also to mutations. We also
establish a relationship between developmental and mutational robustness
through phenotypic variances caused by genetic variation and epigenetic noise.
A universal relationship between the two variances is derived, akin to the
fluctuation-dissipation relationship known in physics
Ergodic Properties of Classical SU(2) Lattice Gauge Theory
We investigate the relationship between the Lyapunov exponents of periodic
trajectories, the average and fluctuations of Lyapunov exponents of ergodic
trajectories, and the ergodic autocorrelation time for the two-dimensional
hyperbola billiard. We then study the fluctuation properties of the ergodic
Lyapunov spectrum of classical SU(2) gauge theory on a lattice. Our results are
consistent with the notion that this system is globally hyperbolic. Among the
many powerful theorems applicable to such systems, we discuss one relating to
the fluctuations in the entropy growth rate.Comment: 21 pages, 7 figure
Using âsport in the community schemesâ to tackle crime and drug use among young people: Some policy issues and problems
This is a PDF version of an article published in European physical education review Š Sage, 2004. The definitive version is available at www.sagepub.com.This article discusses the effectiveness of sport in the community schemes such as the Positive Futures initative and Summer Splsh/Splash Extra in reducing crime and drug use amongst young people
- âŚ