11,370 research outputs found
Nuclear Bar, Star Formation and Gas Fueling in the Active Galaxy NGC 4303
A combination of Hubble Space Telescope (HST) WFPC2 and NICMOS images are
used to investigate the gas/dust and stellar structure inside the central 300
pc of the nearby active galaxy NGC 4303.
The NICMOS H-band (F160W) image reveals a bright core and a nuclear elongated
bar-like structure of 250 pc in diameter. The bar is centered on the bright
core, and its major axis is oriented in proyection along the spin axis of the
nuclear gaseous rotating disk recently detected (Colina & Arribas 1999).
The V-H (F606W - F160W) image reveals a complex gas/dust distribution with a
two-arm spiral structure of about 225 pc in radius. The southwestern arm is
traced by young star-forming knots while the northeastern arm is detected by
the presence of dust lanes. These spirals do not have a smooth structure but
rather they are made of smaller flocculent spirals or filament-like structures.
The magnitudes and colors of the star-forming knots are typical of clusters of
young stars with masses of 0.5 to 1 x yr^{-1} for about 80 Myr.Comment: ApJ, in press (February 1, 2000
A nonlinear drift which leads to -generalized distributions
We consider a system described by a Fokker-Planck equation with a new type of
momentum-dependent drift coefficient which asymptotically decreases as
for a large momentum . It is shown that the steady-state of this system is a
-generalized Gaussian distribution, which is a non-Gaussian
distribution with a power-law tail.Comment: Submitted to EPJB. 8 pages, 2 figures, dedicated to the proceedings
of APFA
Discrete elastic model for stretching-induced flagellar polymorphs
Force-induced reversible transformations between coiled and normal polymorphs
of bacterial flagella have been observed in recent optical-tweezer experiment.
We introduce a discrete elastic rod model with two competing helical states
governed by a fluctuating spin-like variable that represents the underlying
conformational states of flagellin monomers. Using hybrid Brownian dynamics
Monte-Carlo simulations, we show that a helix undergoes shape transitions
dominated by domain wall nucleation and motion in response to externally
applied uniaxial tension. A scaling argument for the critical force is
presented in good agreement with experimental and simulation results.
Stretching rate-dependent elasticity including a buckling instability are
found, also consistent with the experiment
Modal test of the Viking orbiter
A modal test of the Orbiter Development Test Modal (ODTM) has been conducted to verify, or update, the mathematical model used for load analysis. The approach used to assure the quality and validity of the experimental data is defined, the modal test is described, and test results are presented and compared with analysis results. Good correlation between the analyses and the test data assures an acceptable model for incorporation into the mathematical model of the launch system
The Global Structure and Evolution of a Self-Gravitating Multi-phase Interstellar Medium in a Galactic Disk
Using high resolution, two-dimensional hydrodynamical simulations, we
investigate the evolution of a self-gravitating multi-phase interstellar medium
in the central kiloparsec region of a galactic disk. We find that a
gravitationally and thermally unstable disk evolves, in a self-stabilizing
manner, into a globally quasi-stable disk that consists of cold (T < 100 K),
dense clumps and filaments surrounded by hot (T > 10^4 K), diffuse medium. The
quasi-stationary, filamentary structure of the cold gas is remarkable. The hot
gas, characterized by low-density holes and voids, is produced by shock
heating. The shocks derive their energy from differential rotation and
gravitational perturbations due to the formation of cold dense clumps. In the
quasi-stable phase where cold and dense clouds are formed, the effective
stability parameter, Q, has a value in the range 2-5. The dynamic range of our
multi-phase calculations is 10^6 - 10^7 in both density and temperature. Phase
diagrams for this turbulent medium are analyzed and discussed.Comment: 10 pages, 3 figures, ApJ Letters in press (vol. 516
Effects of a Supermassive Black Hole Binary on a Nuclear Gas Disk
We study influence of a galactic central supermassive black hole (SMBH)
binary on gas dynamics and star formation activity in a nuclear gas disk by
making three-dimensional Tree+SPH simulations. Due to orbital motions of SMBHs,
there are various resonances between gas motion and the SMBH binary motion. We
have shown that these resonances create some characteristic structures of gas
in the nuclear gas disk, for examples, gas elongated or filament structures,
formation of gaseous spiral arms, and small gas disks around SMBHs. In these
gaseous dense regions, active star formations are induced. As the result, many
star burst regions are formed in the nuclear region.Comment: 19 pages, 11 figures, accepted for publication in Ap
Strong Turbulence in the Cool Cores of Galaxy Clusters: Can Tsunamis Solve the Cooling Flow Problem?
Based on high-resolution two-dimensional hydrodynamic simulations, we show
that the bulk gas motions in a cluster of galaxies, which are naturally
expected during the process of hierarchical structure formation of the
universe, have a serous impact on the core. We found that the bulk gas motions
represented by acoustic-gravity waves create local but strong turbulence, which
reproduces the complicated X-ray structures recently observed in cluster cores.
Moreover, if the wave amplitude is large enough, they can suppress the
radiative cooling of the cores. Contrary to the previous studies, the heating
is operated by the turbulence, not weak shocks. The turbulence could be
detected in near-future space X-ray missions such as ASTRO-E2.Comment: Movies are available at http://th.nao.ac.jp/tsunami/index.ht
Derivation of the Quantum Probability Rule without the Frequency Operator
We present an alternative frequencists' proof of the quantum probability rule
which does not make use of the frequency operator, with expectation that this
can circumvent the recent criticism against the previous proofs which use it.
We also argue that avoiding the frequency operator is not only for technical
merits for doing so but is closely related to what quantum mechanics is all
about from the viewpoint of many-world interpretation.Comment: 12 page
Cloning of mouse integrin alphaV cDNA and role of the alphaV-related matrix receptors in metanephric development.
Metanephrogenesis has been a long-standing model to study cell-matrix interactions. A number of adhesion molecules, including matrix receptors (i.e., integrins), are believed to be involved in such interactions. The integrins contain alpha and beta s ubunits and are present in various tissues in different heterodimeric forms. In this study, one of the members of the integrin superfamily, alphaV, was characterized, and its relevance in murine nephrogenesis was investigated. Mouse embryonic renal cDNA libraries were prepared and screened for alphaV, and multiple clones were isolated and sequenced. The deduced amino acid sequence of the alpha-v cDNA clones and hydropathic analysis revealed that it has a typical signal sequence and extracellular, transmembrane, and cytoplasmic domains, with multiple Ca2+ binding sites. No A(U)nA mRNA instability motifs were present. Conformational analysis revealed no rigid long-range-ordered structure in murine alphaV. The alphaV was expressed in the embryonic kidney at day 13 of the gestation, with a transcript size of approximately 7 kb. Its expression increased progressively during the later gestational stages and in the neonatal period. It was distributed in the epithelial elements of developing nephrons and was absent in the uninduced mesenchyme. In mature metanephroi, the expression was relatively high in the glomeruli and blood vessels, as compared to the tubules. Various heterodimeric associations of alphaV, i.e., with beta1, beta3, beta5, and beta6, were observed in metanephric tissues. Inclusion of alphaV-antisense-oligodeoxynucleotide or -antibody in metanephric culture induced dysmorphogenesis of the kidney with reduced population of the nephrons, disorganization of the ureteric bud branches, and reduction of mRNA and protein expressions of alphaV. The expressions of integrin beta3, beta5, and beta6 were unaltered. These findings suggest that the integrin alphaV is developmentally regulated, has a distinct spatio-temporal expression, and is relevant in the mammalian organogenesis
- …