8 research outputs found
Evidence of and search for double-charmonium production in and decays
Using data samples of and
events collected with the Belle detector, a first experimental
search has been made for double-charmonium production in the exclusive decays
, where , , , , and . No significant signal is
observed in the spectra of the mass recoiling against the reconstructed
or except for the evidence of production with a
significance of for . The
measured branching fraction \BR(\Upsilon(1S)\rightarrow J/\psi+\chi_{c1}) is
. The
confidence level upper limits on the branching fractions of the other modes
having a significance of less than are determined. These results are
consistent with theoretical calculations using the nonrelativistic QCD
factorization approach.Comment: 12 pages, 4 figures, 1 table. The fit range was extended to include
X(4160) signal according to referee's suggestions. Other results unchanged.
Paper was accepted for publication as a regular article in Physical Review
Preparation and Execution of the Electrical Quality Assurance Program On the LHC Superconducting Circuits During the Second Long Shutdown
The electrical quality assurance (ELQA) of the superconducting circuits of CERN’s Large Hadron Collider (LHC) during its second Long Shutdown (LS2) requires the execution of vast measurement campaigns. Each of 1658 electrical circuits as well as the instrumentation of each of the 1746 individual cryo-assemblies housing magnets, bus-bars and other components of the superconducting circuits, has to undergo a series of tests. At the beginning of the shutdown the tests are performed before and after the warm-up from cryogenic temperatures. The same tests are repeated at the end of the shutdown, this time before and after the cool-down. As part of the dipole bypass diode insulation consolidation project and due to the replacement of a few non-conform magnets, additional electrical tests and measurements had to be performed throughout the shutdown period. With each measurement, electrical parameters like resistance, complex impedance, and the quality of the insulation are verified and stored for future reference. Due to the many thousands of measurements to be performed, multiple automated mobile test benches had to be developed for the different test types along with dedicated database and analysis software applications for the documentation and follow-up of the test results and the non-conformities observed
Development of a data acquisition system for the Belle II silicon vertex detector
The silicon-strip vertex detector in the Belle II experiment is one of essential detectors to search for physics beyond the Standard Model. To read out all 223,744 readout strips of the double-sided silicon strip detectors in high beam background, 1748 APV25 chips are employed for the frontend electronics. Hence, flash analog-to-digital conversion with high-density inputs is required on the back-end electronics. We developed prototypes of the back-end electronics and successfully performed a full integration test at the DESY electron beam line. In this paper, we report on the development of the prototypes and results from the beam test
Performance of the Belle II Silicon Vertex Detector
The Belle II experiment at the SuperKEKB collider of KEK (Japan) will accumulate 50 ab−1 of e+e− collision data at an unprecedented instantaneous luminosity of 8 ×1035 cm−2s−1, about 40 times larger than its predecessor. The Belle II vertex detector plays a crucial role in the rich Belle II physics program, especially for time-dependent measurements. It consists of two layers of DEPFET-based pixels and four layers of double sided silicon strips detectors(SVD). The vertex detector has been recently completed and installed in Belle II for the physics run started in spring 2019. We report here results on the commissioning of the SVD and its performance measured with the first collision data set
Data quality monitors of vertex detectors at the start of the Belle II experiment
The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking.
This paper will report on the final arrangement of the silicon vertex detector part of Belle II with a focus on online monitoring of detector conditions and data quality, on the design and use of diagnostic and reference plots, and on integration with the software framework of Belle II. Data quality monitoring plots will be discussed with a focus on simulation and acquired cosmic and collision data
Alignment for the first precision measurements at Belle II
International audienceOn March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector.The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays.With increasing luminosity and experience, the alignment is approaching the target performance, crucial for the first physics analyses in the era of Super-BFactories. We will present the software framework for the detector calibration and alignment, the results from the first physics run and the prospects in view of the experience with the first data
Alignment for the first precision measurements at Belle II
On March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector.
The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays.
With increasing luminosity and experience, the alignment is approaching the target performance, crucial for the first physics analyses in the era of Super-BFactories. We will present the software framework for the detector calibration and alignment, the results from the first physics run and the prospects in view of the experience with the first data
Data quality monitors of vertex detectors at the start of the Belle II experiment
The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking.
This paper will report on the final arrangement of the silicon vertex detector part of Belle II with a focus on online monitoring of detector conditions and data quality, on the design and use of diagnostic and reference plots, and on integration with the software framework of Belle II. Data quality monitoring plots will be discussed with a focus on simulation and acquired cosmic and collision data