2,918 research outputs found
Nonequilibrium Green's function theory for transport and gain properties of quantum cascade structures
The transport and gain properties of quantum cascade (QC) structures are
investigated using a nonequilibrium Green's function (NGF) theory which
includes quantum effects beyond a Boltzmann transport description. In the NGF
theory, we include interface roughness, impurity, and electron-phonon
scattering processes within a self-consistent Born approximation, and
electron-electron scattering in a mean-field approximation. With this theory we
obtain a description of the nonequilibrium stationary state of QC structures
under an applied bias, and hence we determine transport properties, such as the
current-voltage characteristic of these structures. We define two contributions
to the current, one contribution driven by the scattering-free part of the
Hamiltonian, and the other driven by the scattering Hamiltonian. We find that
the dominant part of the current in these structures, in contrast to simple
superlattice structures, is governed mainly by the scattering Hamiltonian. In
addition, by considering the linear response of the stationary state of the
structure to an applied optical field, we determine the linear susceptibility,
and hence the gain or absorption spectra of the structure. A comparison of the
spectra obtained from the more rigorous NGF theory with simpler models shows
that the spectra tend to be offset to higher values in the simpler theories.Comment: 44 pages, 16 figures, appearing in Physical Review B Dec 200
Gain in quantum cascade lasers and superlattices: A quantum transport theory
Gain in current-driven semiconductor heterostructure devices is calculated
within the theory of nonequilibrium Green functions. In order to treat the
nonequilibrium distribution self-consistently the full two-time structure of
the theory is employed without relying on any sort of Kadanoff-Baym Ansatz. The
results are independent of the choice of the electromagnetic field if the
variation of the self-energy is taken into account. Excellent quantitative
agreement is obtained with the experimental gain spectrum of a quantum cascade
laser. Calculations for semiconductor superlattices show that the simple 2-time
miniband transport model gives reliable results for large miniband widths at
room temperatureComment: 8 Pages, 4 Figures directly included, to appear in Physical Review
Strapdown Miniature Electrostatic Gyro /SDMEG/ development and evaluation Final report, 1 Jun. 1965 - 28 Mar. 1969
Feasibility study for strapdown electrically suspended gyroscope in attitude reference system for spacecraf
Theory of Transmission through disordered superlattices
We derive a theory for transmission through disordered finite superlattices
in which the interface roughness scattering is treated by disorder averaging.
This procedure permits efficient calculation of the transmission thr ough
samples with large cross-sections. These calculations can be performed
utilizing either the Keldysh or the Landauer-B\"uttiker transmission
formalisms, both of which yield identical equations. For energies close to the
lowest miniband, we demonstrate the accuracy of the computationally efficient
Wannier-function approximation. Our calculations indicate that the transmission
is strongly affected by interface roughness and that information about scale
and size of the imperfections can be obtained from transmission data.Comment: 12 pages, 6 Figures included into the text. Final version with minor
changes. Accepted by Physical Review
Signatures of Wigner Localization in Epitaxially Grown Nanowires
It was predicted by Wigner in 1934 that the electron gas will undergo a
transition to a crystallized state when its density is very low. Whereas
significant progress has been made towards the detection of electronic Wigner
states, their clear and direct experimental verification still remains a
challenge. Here we address signatures of Wigner molecule formation in the
transport properties of InSb nanowire quantum dot systems, where a few
electrons may form localized states depending on the size of the dot (i.e. the
electron density). By a configuration interaction approach combined with an
appropriate transport formalism, we are able to predict the transport
properties of these systems, in excellent agreement with experimental data. We
identify specific signatures of Wigner state formation, such as the strong
suppression of the antiferromagnetic coupling, and are able to detect the onset
of Wigner localization, both experimentally and theoretically, by studying
different dot sizes.Comment: 4 pages, 4 figure
Density-matrix theory of the optical dynamics and transport in quantum cascade structures: The role of coherence
The impact of coherence on the nonlinear optical response and stationary
transport is studied in quantum cascade laser structures. Nonequilibrium
effects such as pump-probe signals, the spatio-temporally resolved electron
density evolution, and the subband population dynamics (Rabi flopping) as well
as the stationary current characteristics are investigated within a microscopic
density-matrix approach. Focusing on the stationary current and the recently
observed gain oscillations, it is found that the inclusion of coherence leads
to observable coherent effects in opposite parameter regimes regarding the
relation between the level broadening and the tunnel coupling across the main
injection barrier. This shows that coherence plays a complementary role in
stationary transport and nonlinear optical dynamics in the sense that it leads
to measurable effects in opposite regimes. For this reason, a fully coherent
consideration of such nonequilibrium structures is necessary to describe the
combined optical and transport propertiesComment: 14 pages, 11 figures; final versio
- …