27 research outputs found

    Protein kinase C in porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    Get PDF
    PURPOSE: Identification of the intracellular signal-transduction pathways activated in retinal ischemia may be important in revealing novel pharmacological targets. To date, most studies have focused on identifying neuroprotective agents. The retinal blood vessels are key organs in circulatory failure, and this study was therefore designed to examine the retinal vasculature separately from the neuroretina. METHODS: Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. Protein kinase C (PKC)alpha, PKCbeta1, and PKCbeta2 mRNA levels, and protein expression were determined using real-time PCR, western blot, and immunofluorescence staining techniques. RESULTS: The retinal arteries could easily be dissected free and studied separately from the neuroretina in this porcine model. The PKCalpha, PKCbeta1, and PKCbeta2 mRNA levels tended to be lower in ischemia-reperfused than in sham-operated eyes in both the retinal arteries and the neuroretina. This was most prominent after 5 h, and less pronounced after 12 h and 20 h of reperfusion. Likewise, the protein levels of PKCalpha, PKCbeta1, and PKCbeta2 were slightly lower following ischemia-reperfusion when compared to sham-operated eyes. PKCalpha, PKCbeta1, and PKCbeta2 immunostaining were observed in bipolar cells of the neuroretina and in endothelial cells, and to a low extent in the smooth muscle layer, of the retinal arteries. CONCLUSIONS: Retinal ischemia followed by reperfusion results in lower levels of PKC in both the neuroretina and retinal arteries. New targets for pharmacological treatment may be found by studying the retinal vasculature so as to identify the intracellular signal-transduction pathways involved in the development of injury following retinal circulatory failure

    Up-regulation of endothelin type B receptors in the human internal mammary artery in culture is dependent on protein kinase C and mitogen-activated kinase signaling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Up-regulation of vascular endothelin type B (ET<sub>B</sub>) receptors is implicated in the pathogenesis of cardiovascular disease. Culture of intact arteries has been shown to induce similar receptor alterations and has therefore been suggested as a suitable method for, <it>ex vivo</it>, in detail delineation of the regulation of endothelin receptors. We hypothesize that mitogen-activated kinases (MAPK) and protein kinase C (PKC) are involved in the regulation of endothelin ET<sub>B </sub>receptors in human internal mammary arteries.</p> <p>Methods</p> <p>Human internal mammary arteries were obtained during coronary artery bypass graft surgery and were studied before and after 24 hours of organ culture, using <it>in vitro </it>pharmacology, real time PCR and Western blot techniques. Sarafotoxin 6c and endothelin-1 were used to examine the endothelin ET<sub>A </sub>and ET<sub>B </sub>receptor effects, respectively. The involvement of PKC and MAPK in the endothelin receptor regulation was examined by culture in the presence of antagonists.</p> <p>Results</p> <p>The endohtelin-1-induced contraction (after endothelin ET<sub>B </sub>receptor desensitization) and the endothelin ET<sub>A </sub>receptor mRNA expression levels were not altered by culture. The sarafotoxin 6c contraction, endothelin ET<sub>B </sub>receptor protein and mRNA expression levels were increased after organ culture. This increase was antagonized by; (1) PKC inhibitors (10 μM bisindolylmaleimide I and 10 μM Ro-32-0432), and (2) inhibitors of the p38, extracellular signal related kinases 1 and 2 (ERK1/2) and C-jun terminal kinase (JNK) MAPK pathways (10 μM SB203580, 10 μM PD98059 and 10 μM SP600125, respectively).</p> <p>Conclusion</p> <p>In conclusion, PKC and MAPK seem to be involved in the up-regulation of endothelin ET<sub>B </sub>receptor expression in human internal mammary arteries. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the development of vascular endothelin ET<sub>B </sub>receptor changes in cardiovascular disease.</p

    One year follow-up of patients with refractory angina pectoris treated with enhanced external counterpulsation

    Get PDF
    BACKGROUND: Enhanced external counterpulsation (EECP) is a non-invasive technique that has been shown to be effective in reducing both angina and myocardial ischemia in patients not responding to medical therapy and without revascularization alternatives. The aim of the present study was to assess the long-term outcome of EECP treatment at a Scandinavian centre, in relieving angina in patients with chronic refractory angina pectoris. METHODS: 55 patients were treated with EECP. Canadian cardiovascular society (CCS) class, antianginal medication and adverse clinical events were collected prior to EECP, at the end of the treatment, and at six and 12 months after EECP treatment. Clinical signs and symptoms were recorded. RESULTS: EECP treatment significantly improved the CCS class in 79 ± 6% of the patients with chronic angina pectoris (p < 0.001). The reduction in CCS angina class was seen in patients with CCS class III and IV and persisted 12 months after EECP treatment. There was no significant relief in angina in patients with CCS class II prior to EECP treatment. 73 ± 7% of the patients with a reduction in CCS class after EECP treatment improved one CCS class, and 22 ± 7% of the patients improved two CCS classes. The improvement of two CCS classes could progress over a six months period and tended to be more prominent in patients with CCS class IV. In accordance with the reduction in CCS classes there was a significant decrease in the weekly nitroglycerin usage (p < 0.05). CONCLUSION: The results from the present study show that EECP is a safe treatment for highly symptomatic patients with refractory angina. The beneficial effects were sustained during a 12-months follow-up period

    Endothelin and angiotensin II receptors in human coronary arteries and bypass grafts - Alterations in cardiovascular disease

    No full text
    Angiotensin II (Ang II) and endothelin-1 (ET-1) induce strong vasoconstriction via activation of receptors on vascular smooth muscle cells. In this thesis, the contractile Ang II and endothelin receptors were examined in endothelium-denuded human coronary arteries and in bypass grafts (the left internal mammary artery and the saphenous vein), with focus on receptor alterations in cardiovascular disease. The endothelium was removed and the vasomotor responses were characterized by in vitro pharmacology and the receptor mRNA expression levels were quantified by real-time polymerase chain reaction. Vasoconstriction was mediated by endothelin type A (ETA) receptors in coronary arteries, while both ETA and endothelin type B (ETB) receptors were involved in the bypass grafts. The ETB receptor-mediated contraction and mRNA levels were higher in the saphenous vein than in the mammary artery. This may explain the higher frequency of vasospasm that is seen in the vessel wall of the saphenous vein at the time of surgery and restenosis due to “venous graft disease”. The ETA and ETB receptor mRNA levels were up-regulated in coronary arteries from patients with ischemic heart disease. Increased endothelin receptor activity may contribute to the smooth muscle cell proliferation, vasoconstriction and the decreased blood perfusion that is noted in atherosclerotic disease. The Ang II-induced vasoconstriction of endothelium-denuded human coronary arteries is caused by activation of angiotensin type 1 (AT1) and, to a lesser extent, angiotensin type 2 (AT2) receptors. AT1 receptor mRNA levels were decreased both in arteries from patients with ischemic heart disease and patients with heart failure due to other causes. In patients with heart failure, both the Ang II-induced contraction and the AT1 receptor mRNA levels diminished with increasing age, which may be due to a longer exposure to heart failure in older patients. Culture of human coronary arteries induced similar Ang II and endothelin receptor changes as in ischemic heart disease and heart failure. The Ang II induced contraction and the AT1 and AT2 receptor mRNA levels were decreased, while the ETB receptor mediated contraction and mRNA levels were increased. Organ culture may therefore provide an experimental method in which the development of Ang II and endothelin receptor changes on smooth muscle cells can be studied in detail to further delineate the mechanisms involved in receptor regulation during ischemic heart disease and heart failure

    Angiotensin II-induced vasodilatation in cerebral arteries is mediated by endothelium-derived hyperpolarising factor.

    Get PDF
    The angiotensin II-induced vasodilatation was evaluated in rat middle cerebral artery, especially regarding endothelium-derived hyperpolarising factor (EDHF), by use of a pressurised arteriograph. The angiotensin II dilatation was partly antagonised by inhibitors of nitric oxide synthase and cyclo-oxygenase. The remaining dilatation was inhibited by the potassium channel blockers, charybdotoxin and apamin, providing direct evidence that angiotensin II induces EDHF-mediated dilatation in cerebral arteries. The angiotensin II dilatation was blocked by the angiotensin AT(1) and AT(2) receptor blockers candesartan and PD 123319. Both angiotensin AT(1) and AT(2) receptors were detected on the endothelium by imnitmohistochemistry. (c) 2005 Elsevier B.V. All rights reserved

    Triptan-induced contractile (5-HT1B receptor) responses in human cerebral and coronary arteries: relationship to clinical effect

    No full text
    Triptans are agonists at 5-HT1B and 5-HT1D (where 5-HT is 5-hydroxytryptamine; serotonin) receptors and cause vasoconstriction of isolated blood vessels. The aim of the present study was to determine vasoconstrictor potency (EC50) of triptans in human coronary and cerebral arteries and to examine whether there was any relationship with the maximal plasma concentrations (Cmax; nM) of the drugs achieved following oral administration of clinically relevant doses to man using values reported in the literature. We also examined the expression of 5-HT1B receptors in atherosclerotic and normal coronary arteries. The vasocontractile responses to sumatriptan, rizatriptan or eletriptan were characterized by in vitro pharmacology. The ratio of Cmax/EC50 was calculated. 5-HT1B and 5-HT1D receptors were visualized by immunohistochemical techniques in coronary arteries. Sumatriptan, rizatriptan and eletriptan were powerful vasoconstrictors in cerebral artery. The rank order of agonist potency was eletriptan = rizatriptan = sumatriptan. In the coronary artery, the triptans were weaker vasoconstrictors. The rank order of potency was similar. In cerebral artery the ratio of Cmax/EC50 was not significantly different from unity, indicating a relationship between these two parameters. In general for the coronary artery, the ratios were significantly less than unity, indicating no direct relationship. Immunohistochemistry showed expression of 5-HT1B receptors in the medial layer, but did not reveal any obvious difference in 5-HT1B receptor expression between normal and atherosclerotic coronary arteries. The results support the notion that triptans are selective vasoconstrictors of cerebral arteries over coronary arteries and that there is a relationship between vasoconstrictor potency in cerebral arteries and clinically relevant plasma levels
    corecore