5 research outputs found
Efficient optimization method for the light extraction from periodically modulated LEDs using reciprocity
The incoherent emission of periodically structured Light Emitting Diodes (LEDs) can be computed at relatively low computational cost by applying the reciprocity method. We show that by another application of the reciprocity principle, the structure of the LED can be optimized to obtain a high emission. We demonstrate the method by optimizing one-dimensional grating structures. The optimized structures have twice the extraction efficiency of an optimized flat structure.Imaging Science and TechnologyApplied Science
A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers
We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.ImPhys/Imaging PhysicsApplied Science
Characterization of the diffraction efficiency of polymer-liquid-crystal-polymer-slices gratings at all incidence angles
Recently, a novel holographic diffraction grating made of polymer slices alternated to homogeneous films of nematic liquid crystal (POLICRYPS) was realized. We study the optical performance of the POLICRYPS gratings by both numerical simulations and experiments. Characterization of the grating at normal and conical reading mount are performed. The diffraction efficiency depends strongly on the angles of incidence. Besides, the characterization of the diffraction efficiency at Bragg angle incidence is studied. A uniform high diffraction efficiency is achieved when the incident wave satisfies the Bragg condition.Imaging Science and TechnologyApplied Science
Direct measurement of the near-field super resolved focused spot in InSb
Under appropriate laser exposure, a thin film of InSb exhibits a sub-wavelength thermally modified area that can be used to focus light beyond the diffraction limit. This technique, called Super-Resolution Near-Field Structure, is a potential candidate for ultrahigh density optical data storage and many other high-resolution applications. We combined near field microscopy, confocal microscopy and time resolved pump-probe technique to directly measure the induced sub-diffraction limited spot in the near-field regime. The measured spot size was found to be dependent on the laser power and a decrease of 25% (100nm) was observed. Experimental evidences that support a threshold-like simulation model to describe the effect are also provided. The experimental data are in excellent agreement with rigorous simulations obtained with a three dimensional Finite Element Method code.IST/Imaging Science and TechnologyApplied Science
Submicron hollow spot generation by solid immersion lens and structured illumination
We report on the experimental and numerical demonstration of immersed submicron-size hollow focused spots, generated by structuring the polarization state of an incident light beam impinging on a micro-size solid immersion lens (?-SIL) made of SiO2. Such structured focal spots are characterized by a doughnut-shaped intensity distribution, whose central dark region is of great interest for optical trapping of nano-size particles, super-resolution microscopy and lithography. In this work, we have used a high-resolution interference microscopy technique to measure the structured immersed focal spots, whose dimensions were found to be significantly reduced due to the immersion effect of the ?-SIL. In particular, a reduction of 37% of the dark central region was verified. The measurements were compared with a rigorous finite element method model for the ?-SIL, revealing excellent agreement between them.Image Science and TechnologyApplied Science