849 research outputs found

    Search for the production of four top quarks in the single-lepton and opposite-sign dilepton final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the standard model production of four top quarks (pp → tt¯tt¯) is reported using single-lepton plus jets and opposite-sign dilepton plus jets signatures. Proton-proton collisions are recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV in a sample corresponding to an integrated luminosity of 35.8 fb−1. A multivariate analysis exploiting global event and jet properties is used to discriminate tt¯tt¯ from tt¯ production. No significant deviation is observed from the predicted background. An upper limit is set on the cross section for tt¯tt¯ production in the standard model of 48 fb at 95% confidence level. When combined with a previous measurement by the CMS experiment from an analysis of other final states, the observed signal significance is 1.4 standard deviations, and the combined cross section measurement is 13(+11/−9) fb. The result is also interpreted in the framework of effective field theory

    Search for the production of four top quarks in the single-lepton and opposite-sign dilepton final states in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search for the standard model production of four top quarks (pp → tt¯tt¯) is reported using single-lepton plus jets and opposite-sign dilepton plus jets signatures. Proton-proton collisions are recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV in a sample corresponding to an integrated luminosity of 35.8 fb−1. A multivariate analysis exploiting global event and jet properties is used to discriminate tt¯tt¯ from tt¯ production. No significant deviation is observed from the predicted background. An upper limit is set on the cross section for tt¯tt¯ production in the standard model of 48 fb at 95% confidence level. When combined with a previous measurement by the CMS experiment from an analysis of other final states, the observed signal significance is 1.4 standard deviations, and the combined cross section measurement is 13+11−9 fb. The result is also interpreted in the framework of effective field theory.Peer reviewe

    Search for the production of four top quarks in the single-lepton and opposite-sign dilepton final states in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search for the standard model production of four top quarks (pp → tt̄tt̄) is reported using single-lepton plus jets and opposite-sign dilepton plus jets signatures. Proton-proton collisions are recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV in a sample corresponding to an integrated luminosity of 35.8 fb⁻¹. A multivariate analysis exploiting global event and jet properties is used to discriminate tt̄tt̄ from tt̄ production. No significant deviation is observed from the predicted background. An upper limit is set on the cross section for tt̄tt̄ production in the standard model of 48 fb at 95% confidence level. When combined with a previous measurement by the CMS experiment from an analysis of other final states, the observed signal significance is 1.4 standard deviations, and the combined cross section measurement is 13⁺¹¹₋₉fb. The result is also interpreted in the framework of effective field theory

    Search for top squarks in the four-body decay mode with single lepton final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t∼1), is presented. The search targets the four-body decay of the t∼1, which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ∼01), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t∼1) and m(χ∼01). The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t∼1) − m(χ∼01) = 10 and 80 GeV, respectively

    Search for top squark pair production in a final state with at least one hadronically decaying tau lepton in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Evidence for four-top quark production in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Performance of the local reconstruction algorithms for the CMS hadron calorimeter with Run 2 data

    Get PDF
    A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared

    Measurement of the B0^{0}s_{s} → μ+^{+} μ^{-} decay properties and search for the B0^{0} → μ+^{+}μ^{-} decay in proton-proton collisions at √s = 13 TeV

    Get PDF
    corecore