57 research outputs found

    Global Spread of Multiple Aminoglycoside Resistance Genes

    Get PDF
    Emergence of the newly identified 16S rRNA methylases RmtA, RmtB, and ArmA in pathogenic gram-negative bacilli has been a growing concern. ArmA, which had been identified exclusively in Europe, was also found in several gram-negative pathogenic bacilli isolated in Japan, suggesting global dissemination of hazardous multiple aminoglycoside resistance genes

    16S rRNA Methylase–producing, Gram-Negative Pathogens, Japan

    Get PDF
    To investigate the exact isolation frequency of 16S rRNA methylase–producing, gram-negative pathogenic bacteria, we tested 87,626 clinical isolates from 169 hospitals. Twenty-six strains from 16 hospitals harbored 16S rRNA methylase genes, which suggests sparse but diffuse spread of pan-aminoglycoside–resistant microbes in Japan

    Plasmid-Mediated qepA Gene among Escherichia coli Clinical Isolates from Japanâ–¿

    No full text
    Seven hundred fifty-one Escherichia coli clinical isolates collected from 140 Japanese hospitals between 2002 and 2006 were screened for the qepA and qnr genes. Two E. coli isolates (0.3%) harbored qepA, but no qnr was identified. The results suggested a low prevalence of E. coli harboring qepA or qnr in Japan

    Novel Chimeric β-Lactamase CTX-M-64, a Hybrid of CTX-M-15-Like and CTX-M-14 β-Lactamases, Found in a Shigella sonnei Strain Resistant to Various Oxyimino-Cephalosporins, Including Ceftazidime▿

    No full text
    The plasmid-mediated novel β-lactamase CTX-M-64 was first identified in Shigella sonnei strain UIH-1, which exhibited resistance to cefotaxime (MIC, 1,024 μg/ml) and ceftazidime (MIC, 32 μg/ml). The amino acid sequence of CTX-M-64 showed a chimeric structure of a CTX-M-15-like β-lactamase (N- and C-terminal moieties) and a CTX-M-14-like β-lactamase (central portion, amino acids 63 to 226), suggesting that it originated by homologous recombination between the corresponding genes. The introduction of a recombinant plasmid carrying blaCTX-M-64 conferred resistance to cefotaxime in Escherichia coli, and the activities of cefotaxime and ceftazidime were restored in the presence of clavulanic acid. Of note, CTX-M-64 production could also confer consistent resistance to ceftazidime, which differs from the majority of CTX-M-type enzymes, which poorly hydrolyze ceftazidime. These results were consistent with the kinetic parameters determined with the purified CTX-M-64 enzyme. The blaCTX-M-64 gene was flanked upstream by an ISEcp1 sequence and downstream by an orf477 sequence. The sequence of the 45-bp spacer region between the right inverted repeat (IRR) of ISEcp1 and blaCTX-M-64 was exactly identical to that of ISEcp1-blaCTX-M-15-like. Moreover, the presence of a putative IRR of ISEcp1 at the right end of truncated orf477 is indicative of an ISEcp1-mediated transposition event in the blaCTX-M-64 gene. The emergence of CTX-M-64 by probable homologous recombination would suggest the natural potential of an alternative mechanism for the diversification of CTX-M-type β-lactamases

    Prevalence of Fosfomycin Resistance among CTX-M-Producing Escherichia coli Clinical Isolates in Japan and Identification of Novel Plasmid-Mediated Fosfomycin-Modifying Enzymes â–¿

    No full text
    We evaluated the in vitro activity of fosfomycin against a total of 192 CTX-M β-lactamase-producing Escherichia coli strains isolated in 70 Japanese clinical settings. Most of the isolates (96.4%) were found to be susceptible to fosfomycin. On the other hand, some of the resistant isolates were confirmed to harbor the novel transferable fosfomycin resistance determinants named FosA3 and FosC2, which efficaciously inactivate fosfomycin through glutathione S-transferase activity

    Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-β-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance

    No full text
    Carbapenem antibiotics are the last resort for control of severe infectious diseases, bloodstream infections, and pneumonia caused by Gram-negative bacteria, including Enterobacteriaceae. However, carbapenem-resistant Enterobacteriaceae (CRE) strains have spread globally and are a critical concern in clinical settings because CRE infections are recognized as a leading cause of increased mortality among hospitalized patients. Most CRE produce certain kinds of serine carbapenemases (e.g., KPC- and GES-type β-lactamases) or metallo-β-lactamases (MBLs), which can hydrolyze carbapenems. Although effective MBL inhibitors are expected to restore carbapenem efficacy against MBL-producing CRE, no MBL inhibitor is currently clinically available. Here, we synthesized 2,5-diethyl-1-methyl-4-sulfamoylpyrrole-3-carboxylic acid (SPC), which is a potent inhibitor of MBLs. SPC is a remarkable lead compound for clinically useful MBL inhibitors and can potentially provide a considerable benefit to patients receiving treatment for lethal infectious diseases caused by MBL-producing CRE.Production of metallo-β-lactamases (MBLs), which hydrolyze carbapenems, is a cause of carbapenem resistance in Enterobacteriaceae. Development of effective inhibitors for MBLs is one approach to restore carbapenem efficacy in carbapenem-resistant Enterobacteriaceae (CRE). We report here that sulfamoyl heteroarylcarboxylic acids (SHCs) can competitively inhibit the globally spreading and clinically relevant MBLs (i.e., IMP-, NDM-, and VIM-type MBLs) at nanomolar to micromolar orders of magnitude. Addition of SHCs restored meropenem efficacy against 17/19 IMP-type and 7/14 NDM-type MBL-producing Enterobacteriaceae to satisfactory clinical levels. SHCs were also effective against IMP-type MBL-producing Acinetobacter spp. and engineered Escherichia coli strains overproducing individual minor MBLs (i.e., TMB-2, SPM-1, DIM-1, SIM-1, and KHM-1). However, SHCs were less effective against MBL-producing Pseudomonas aeruginosa. Combination therapy with meropenem and SHCs successfully cured mice infected with IMP-1-producing E. coli and dually NDM-1/VIM-1-producing Klebsiella pneumoniae clinical isolates. X-ray crystallographic analyses revealed the inhibition mode of SHCs against MBLs; the sulfamoyl group of SHCs coordinated to two zinc ions, and the carboxylate group coordinated to one zinc ion and bound to positively charged amino acids Lys224/Arg228 conserved in MBLs. Preclinical testing revealed that the SHCs showed low toxicity in cell lines and mice and high stability in human liver microsomes. Our results indicate that SHCs are promising lead compounds for inhibitors of MBLs to combat MBL-producing CRE

    Usefulness of Adult Bovine Serum for Helicobacter pylori Culture Media

    No full text
    Fetal bovine serum (FBS) and adult bovine serum (BS) exhibited bactericidal activity against Helicobacter pylori at various levels, which were higher in BS than in FBS. The bactericidal activity was inactivated by heat treatment at 56°C for 30 min. Our results demonstrated that heat-treated BS is a useful serum source of H. pylori culture medium

    Mode of Transposition and Expression of 16S rRNA Methyltransferase Gene rmtC Accompanied by ISEcp1

    No full text
    A newly identified 16S rRNA methyltransferase gene, rmtC, was accompanied by an ISEcp1 element at its 5′ end. This ISEcp1 element, which contained a transposase gene, tnpA, provided a promoter activity for expression of the adjacent rmtC; and this structure enabled the rmtC gene to be transposed onto another plasmid in Escherichia coli
    • …
    corecore