16 research outputs found

    Interleukin-6, tumour necrosis factor α and interleukin-1ÎČ in patients with renal cell carcinoma

    Get PDF
    As regulators of malignant cell behaviour and communication with stroma, cytokines have proved useful in understanding cancer biology and developing novel therapies. In renal cell carcinoma, patients with inflammatory reactions are known to have poor prognosis. In order to elucidate the relation between renal cell carcinoma and the host, serum levels of inflammatory cytokines, interleukin-6, tumour necrosis factor α, interleukin-1ÎČ, were measured. One hundred and twenty-two patients with renal cell carcinoma and 21 healthy control subjects were studied, and serum cytokine levels were measured using a highly sensitive ELISA kit. As a result, in the control group, interleukin-6, tumour necrosis factor α and interleukin-1ÎČ levels were 1.79±2.03, 2.74±0.94 and 0.16±0.17 pg ml−1, respectively. In the renal cell carcinoma patients, they were 8.91±13.12, 8.44±4.15 and 0.53±0.57 pg ml−1, respectively, and significantly higher. In the comparison of stage, interleukin-6 level was significantly higher in the stage IV group compared to the other stage groups including the control group, while tumour necrosis factor α level was significantly higher in each stage group compared to the control group. As for grade, interleukin-6 level was significantly higher in the grade 3 group compared to the control, grade 1 and grade 2 groups, while tumour necrosis factor α level was significantly higher in each grade group compared to the control group. All cytokines had a positive correlation with tumour size. In regard to the correlation with CRP, all cytokines had a positive correlation with CRP, while interleukin-6 had a particularly strong correlation. In conclusion, interleukin-6 may be one of the factors for the poor prognosis of patients with renal cell carcinoma. In addition, tumour necrosis factor α may be useful in the early diagnosis of renal cell carcinoma and post-operative follow-up

    The T cell receptor repertoire of CD8+CD28− T lymphocytes is dominated by expanded clones that persist over time

    No full text
    The costimulatory molecule CD28 is expressed on almost all CD4+ T cells, but on only a portion of CD8+ T cells in healthy human adults. αÎČ T cells may thus be divided into three phenotypically and functionally different subsets: CD4+, CD8+CD28+ and CD8+CD28−. Using peripheral blood lymphocytes from six healthy adults, we have studied the T cell receptor (TCR) repertoire within these subsets by analysis of the distribution of lengths of the complementarity determining region 3 (CDR3) of the beta variable (BV) transcripts and flow cytometric analysis of TCR VÎČ usage. Expanded CDR3 lengths were identified in 86% of BV families within CD8+CD28− T cells, but in only 4% within CD4+ T cells, and 35% within CD8+CD28+ T cells (P < 0.01). When sequenced, the majority of expanded peaks were found to be dominated by single clones. Identical expanded clones were found within both CD8+CD28+ and CD8+CD28− subsets, consistent with the belief that CD8+CD28− T cells descend directly from CD8+CD28+ T cells. Greatly expanded CD28− clones were found within both CD8+ and CD4+ subsets and persisted at the same magnitude for up to 4.5 years of observation. The finding of a small proportion of cells expressing Ki-67 showed that some of these clonally expanded cells were in the active stages of the cell cycle, but few of the cells expressed activation markers CD69, CD25, CD71 or CD122. One likely explanation for the persistence of expanded peripheral lymphocyte populations in healthy individuals is the presence of persistent antigen

    2002 Research Honors Program Abstracts

    Full text link
    Faculty in the College of Agriculture and Life Sciences at Cornell University mentor and guide undergraduate students who have chosen to pursue a research project and graduate with honors. These abstracts reflect the depth of their scholarship and intellectual ability. The research projects encompass work in animal science, biological science, entomology, natural resources, physical science, plant science, and social science
    corecore